
Clustering Android Malware Families by Http Traffic

Marco Aresu, Davide Ariu, Mansour Ahmadi, Davide Maiorca and Giorgio Giacinto

Department of Electrical and Electronic Engineering, University of Cagliari

Piazza d’Armi, 09123, Cagliari, Italy

Email: aresu.ma@gmail.com, {davide.ariu, mansour.ahmadi, davide.maiorca, giacinto}@diee.unica.it

Abstract—Due to its popularity and open-source nature, An-
droid is the mobile platform that has been targeted the most by
malware that aim to steal personal information or to control the
users’ devices. More specifically, mobile botnets are malware that
allow an attacker to remotely control the victims’ devices through
different channels like HTTP, thus creating malicious networks
of bots. In this paper, we show how it is possible to effectively
group mobile botnets families by analyzing the HTTP traffic
they generate. To do so, we create malware clusters by looking
at specific statistical information that are related to the HTTP
traffic. This approach also allows us to extract signatures with
which it is possible to precisely detect new malware that belong
to the clustered families. Contrarily to x86 malware, we show
that using fine-grained HTTP structural features do not increase
detection performances. Finally, we point out how the HTTP
information flow among mobile bots contains more information
when compared to the one generated by desktop ones, allowing
for a more precise detection of mobile threats.
Keywords—Android, Botnet, Malware detection, Clustering, HTTP
Traffic Network

I. INTRODUCTION

A botnet is a network of compromised machines (bots)
commanded and controlled by a bot master for massive
attacks such as dispatching unsolicited emails (SPAM),
launching Distributed Denial of Service (DDoS) attacks, and
performing information theft. Botnets leverage on different
approaches such as encrypted HTTP protocol, fast-flux, and
domain-flux techniques to be resilient against detection.
Botnets may rely on 2 types of command and control (C&C)
channels: (i) centralized C&C such as IRC and HTTP; (ii)
distributed C&C such as P2P. C&C traffic is hard to identify
and to be blocked either at the network level (e.g., by setting
appropriate rules on a firewall) or at the DNS level (e.g., by
domain blacklisting).
Before the age of smartphones, several studies were performed
concerning the detection of malware in mobile networks [1],
[2]. Mickens et al. [3] proposed Probabilistic Queuing, a
framework that analyzes network nodes to detect infected
ones. The prominent work on botnet detection is BotMiner
[4], which is a general framework that does not depend on
the botnet C&C protocol and structure.
As the source of the user-generated network traffic is moving
from desktop computers to mobile devices, mobile malware
have become a serious concern that target in particular
the Android platform [5]. Android botnets [6] are malware
families that take control of Android devices in the same way
as malware that are designed to set up a botnet of desktop
computers. Commands to mobile bots are sent through
different channels such as HTTP, SMS, and the Google Cloud
Messaging (GCM) service. Although the Android system
itself and mobile anti malware products introduced many

security policies and techniques to protect Android devices
against malware, mobile botnets are still on the rise.
As large numbers of new mobile malware samples are
collected on a daily basis, new techniques are needed for
a fast and accurate assessment of the family the malware
belongs to. We focus our analysis on malware samples that
send and receive data using the HTTP channel. We chose
HTTP for our study as 70% of the generated network traffic
by Android apps is spread through this protocol [7]. In
addition, most of the web-based traffic generated by Android
apps does not use the HTTPS protocol [8]. In particular, more
than 99% of Android botnets use the HTTP-based web traffic
to receive bot commands from their C&C servers.

In this paper we show that mobile malware can be effectively
clustered and detected on the basis of statistics calculated
on the HTTP traffic that is generated by the applications. To
do so, we leveraged on a previous work [9] that proposed
a technique to cluster and detect malware for desktop
architectures. Results show that not only the same rationale is
still valid for mobile devices, but also that a simpler system
can be used when dealing with mobile malware.
In summary, this paper aims to answer the following research
questions:
RQ1 Can we use the HTTP network traffic generated by
Android apps to detect malware families?
RQ2 Which features extracted from the HTTP traffic are
effective for clustering and detecting Android malware?
RQ3 How well do the performances on Android malware
compare to the ones on desktop malware?
Accordingly to such questions, the contributions of the paper
are the following:

• We show that the analysis of the HTTP traffic is prominent
for the detection of Android malware.

• We propose a malware detection system that is both efficient
and effective, as it leverages on seven statistical features
that allow for reliably clustering Android malware into
families. From such cluster we extract signatures with
which it is possible to precisely detect malware belonging
to the clustered families.

• The overall performances of the system for mobile malware
clustering and detection are better than the ones related
to a similar system developed by some of the authors for
traditional malware [9]. The reason behind this behavior
can be related to the smaller variability in the statistics of
the HTTP traffic, as HTTP communications among apps
are generally more limited when compared to desktop
ones. In addition, mobile botnets have to control less func-
tionalities and applications compared to Desktop ones.
In this way, the traffic generated by malware samples



belonging to the same family can be more easily separated
from the traffic generated either by benign applications or
malicious applications belonging to different families.

The rest of the paper is organized as follows:
Section II provides an overview of the state of the art in mobile
malware clustering, as well as the related work on malware
clustering; The method used for the experimental evaluation
is presented in Section III. Section IV shows the results of the
experiments carried out on a significant dataset of Android
malware samples. Conclusions are drawn in Section V.

II. RELATED WORK

Many security mechanisms were proposed to detect ma-
licious Android app and protect targets from attacks. Most
of the proposed mechanisms are based on analyzing appli-
cation elements such as permissions, the employed API, or
its bytecode. Such mechanisms employ static or dynamic
analysis, the latter performed through instrumenting or virtual
machine monitoring. Alternatively, applications could be also
analyzed by observing the network traffic they generate. In the
following, we will briefly review these detection mechanisms.

• Application analysis Some static analysis approaches
like SEFA [10], ComDroid [11], Epicc [12], Woodpecker
[13], and Chex [14] aim to detect Inter-Component
Communication vulnerabilities (ICC) by analyzing the
application bytecode. Such bytecode is also analyzed by
PiggyApp [15] and DroidMOSS [16] to detect repack-
aged applications. Other approaches such as Drebin [17],
DroidMat [18], DroidMiner [19] use learning-based sys-
tems to detect anomalies by considering permissions,
APIs and bytecode instructions.
As static analysis can just reveal a subset of malicious
content, a number of dynamic analysis systems have
been proposed that can be roughly subdivided into two
groups: systems based (i) on virtual machine monitoring
(VMM), and (ii) on instrumentation. Crowdroid [20],
CopperDroid [21], DroidScope [22], and AppsPlayground
[23] are VMM-based systems that analyze system calls to
detect malicious behaviours. Other examples [24], [25] of
these systems profile Android metadata to detect malware.
In addition to VMM-based systems, dynamic analysis
can be carried out by instrumenting the Android OS (on
the source code level) with additional security controls.
For example, TaintDroid [26], and Appfence [27] modify
the Dalvik virtual machine to perform application taint-
analysis.

• Network traffic analysis Other approaches explicitly
analyze network traffic for different goals. Andromaly
[28] is malware detection system that employs machine
learning and leverages information such as the CPU
usage, active processes, and the amount of transferred
data through the network. In another work [29] by the
same authors, the analysis was focused on the network
traffic generated by Android applications. The main goal
of this system was the identification of malicious attacks
perpetrated by means of repackaging. The authors showed
that applications could be subdivided into a number of
categories according to the statistics of their transferred
data. They also concluded that deviations from specific

Approach
Analyzed protocol

Purpose
TCP HTTP

Andromaly [28] Malware detection

NetworkProfiler [7] Android fingerprinting

Tongaonkar et al. [32] Identification of apps with ads

Shabtai et al. [29] Malware and Repackaging detection

Narudin et al. [30] Malware detection

Arora et al. [31] Malware detection

Conti et al. [34] Identification of user actions

Wu et al. [35] Detect repackaged apps

The method in this paper Malware detection

*All the systems use machine learning techniques

Table I. COMPARISON OF DIFFERENT NETWORK ANALYSIS

TECHNIQUES FOR ANDROID APPLICATIONS

normal behaviors could be classified as malicious activity.

Narudin et al. [30] proposed another detection approach
based on both TCP and HTTP protocols. They considered
network traffic features such as some basic information
from the TCP header (e.g., the frame length), content
based features such as the number of HTTP requests, and
time-/connection- based features such as the number of
frames in a specific time interval or connection. Another
nearly similar detection approach [31] was proposed by
using a classification system, which is fed just with some
time-/connection- based features, and was tested on a
small dataset containing 43 malware samples.

NetworkProfiler [7] is another approach that performs
application analysis based on the HTTP header. They
generated fingerprints from the network usage of each
app, and they were able to use them to detect malicious
activities by inspecting the traffic logs produced by a
network provider. Subsequently, the same authors resorted
to network traces to identify Android applications that
use in-app advertisements [32]. Zarras et al. [33]
proposed a system that analyzes, among the others, the
sequence of headers in HTTP communications to detect
malicious traffic generated by botnets. To this end, they
extract HTTP traffic generated from both desktop and
mobile applications.

Apart from identifying coarse-grain behaviours such as
the presence of maliciousness in a network traffic flow,
extracting finer-grain information from the device com-
munications can be interesting for an adversary. Conti
et al. [34] designed a system based on network flows
analysis and machine learning techniques to identify user
actions such as sending an email or posting a message
on a friend’s wall in online social networks. Wu et
al. [35] proposed an approach based on extracting the
characteristics of the app from the HTTP traffic to detect
repackaged applications on the Android markets.

Table I provides a summary of the aforementioned network-
based analysis approaches, and compares them to the char-
acteristics of the method that we employ in this paper. Our
method is the first approach that extracts a few statistical
features just from the traffic HTTP header for the task of
Android malware detection.



III. ANDROID MALWARE CLUSTERING BY STATISTICAL

TRAFFIC FEATURES

We relied on an algorithm that has been proposed by some
of the authors for clustering malware that target traditional
desktop systems [9], and tested if the proposed scheme was
still valid for clustering Android malware on the basis of the
HTTP traffic that they generated. The algorithm adopts a multi-
step clustering procedure to define the clusters and generate
the signatures for malware detection. The multi-step procedure
was proposed to speed-up the process, by first using statistical
traffic features to perform a coarse- grained clustering, and
then by employing a set of structural features (i.e., features
that take into account the content of each HTTP connection) to
perform a fine-grained clustering. Both the coarse-grained and
fine-grained clustering procedures are carried out by resorting
to hierarchical clustering techniques, where data is aggregated
in nested clusters and the clustering process terminates when
further aggregation merges two distant clusters. In the follow-
ing we will briefly recall these steps:

1) Coarse-grained Clustering: to perform this step, the
BIRCH algorithm is employed [36]. The main goal of
BIRCH is to perform approximate clustering of arbitrarily
large datasets with a guaranteed memory bound and with
I/O access costs that grow linearly with the size of the
dataset. Whenever the clustering process approaches the
preset memory limit, the clustering algorithm will further
compress the dataset, thus producing a less fine-grained
representation of the data and thus resulting in fewer,
larger clusters. The term coarse grained refers to the
use of simple statistical features extracted from the HTTP
traffic to characterize the connections. The seven features
that have been used are the following: (i) the total number
of HTTP requests, (ii) the number of GET requests, (iii)
the number of POST requests, (iv) the average length of
the URLs, (v) the average number of parameters in the
request, (vi) the average amount of data sent by POST
requests and (vii) the average length of the response. The
size of a cluster can be measured by its radius, whose
value can be limited to avoid generating too large clus-
ters that might incorrectly group the connections. After
this process, the clusters that are obtained will contain
HTTP connections featuring similar statistical features.
However, such connections might be related to different
malware families. For this reason, each cluster needs to be
further refined through a fine-grained clustering process,
in order to further split the coarse-grained clusters that
might contain different families.

2) Fine-grained Clustering: To perform this step, a single-
linkage hierarchical clustering algorithm is used and the
distance between HTTP requests is computed according
to the four parameters: (i) the request method used, (ii)
the page, (iii) the set of parameters names, (iv) and the
set of parameters values. The reader that is interested in a
detailed description of the distance computation employed
at this step could check [37].

3) Signature Generation: Whereas clustering allows for
grouping together malware samples belonging to the
same family, further information can be extracted by the
samples in the same cluster, leading to the generation
of a signature that can be used for detection. To this

end, the Token-Subsequence algorithm described in [38]
can be used to extract a signature from each group of
malware. These signatures are then used by a network IDS
to perform the detection of malicious traffic generated by
malware samples.

IV. EVALUATING THE EFFECTIVENESS OF HTTP-BASED

CLUSTERING FOR ANDROID MALWARE

This section represents the main contribution of the paper,
as we aim to assess if the technique proposed for traditional
desktop malware can be used to effectively cluster Android
malware. In particular, our experiments had three main goals:

• verifying if the HTTP traffic generated by Android mal-
ware can be used to reveal the family they belong to;

• assessing which of the features that can be extracted from
HTTP traffic are effective for malware clustering;

• checking if the result of the clustering process allows for
extracting malware signatures that could be used by a
NIDS.

In the following, we first describe the dataset used in the
experiments and we present the measures used to evaluate the
results. Then, we report and discuss all the experimental results
that we attained.

A. Dataset

We gathered a large number of malicious Android applica-
tions to evaluate the effectiveness of the clustering procedure,
and a large number of benign Android applications to evaluate
the effectiveness of the signatures in terms of false positive
rate. For the malicious samples, we focused on Android
malware families that were related to botnets. We also analyzed
malware families that delivered information to a remote server
through HTTP.

The samples were gathered from Malgenome [39], Conta-
gio [40], Drebin [17] and VirusTotal [41]. There were many
malware families that interacted with their C&C servers by
HTTP, SMS messages, emails, etc. As the majority of malware
families use the HTTP protocol, we just considered the families
that employ HTTP for their C&C channel. For each sample, we
extracted the HTTP information by using CopperDroid [42],
or by employing either Anubis [43] or TraceDroid [44] for
the cases in which CopperDroid could not generate network
traffic. To retain the samples that actually generated network
traffic, we removed the ones that did not produce any valid
HTTP communication due to the unavailability of their C&C
servers.

To avoid inaccuracies in assigning each malware sample
to a family, we developed a tool1 that automatically scans
each sample using Virustotal, and creates a naming convention
based on the outputs of different anti-malware products. The
list of the considered malware families is shown in Table II.

1https://github.com/ManSoSec/Auto-Malware-Labeling



Malware family # Samples Malware family # Samples

AndroRat 11 Fjcon 106

AVPass 1 Geinimi 24

BackFlash 2 GoldenEagle 2

BadNews 2 Lien 6

BaseBridge 112 NickiSpy 2

BgServ 45 Obad 1

Chulli 2 Plankton 119

DroidKungFu 86 RootSmart 25

Extension 69 Skullkey 1

FakeAngry 151 SMSpacem 5

FakePlay 8 Tracer 13

FakeTimer 13

Total 806

Table II. MALWARE FAMILIES USED FOR THE EXPERIMENTAL

ASSESSMENT OF THE EFFECTIVENESS OF THE HTTP CLUSTERING

PROCEDURE

Benign Dataset Number of requests

Web Browser 1102237

Android Apps 1037555

Total 2139792

Table III. NUMBER OF BENIGN REQUESTS GENERATED BY BROWSING

WEB SITES, AND BY ANDROID APPLICATIONS

There are two columns in Table II. The Malware family
column refers to the name of the malware variant, and the
related number shows the considered malware samples for that
variant.
In order to evaluate the false positive rate, we also collected a
dataset of legitimate traffic. We collected over 2× 106 HTTP
requests from October 2014 to December 2014. Part of this
traffic was achieved by sniffing the HTTP requests generated
by crawling 173 most visited web sites (without considering
search engines) in an Android emulator. The other part of
the benign dataset contains HTTP traffic generated by An-
droid applications. To generate such traffic, we performed two
steps: (i) we collected applications that feature the permission
android.permission.INTERNET by crawling2 Google Play. We
also obtained the thirty top free applications in Google Play
under different categories such as Comics, Communication,
News and Magazines, Shopping, Social, Sports, and Travel;
(ii) we emulated the execution of the Android applications by
simulating a real user behavior through the Android testing
framework named Uiautomator [45]. Uiautomator lets users
test the application user interface (UI) efficiently, and we
exploited it to automatically interact with all of the elements
in the applications’ layouts to generate HTTP traffic. During
the interaction, the network traffic is captured by the aid of
the tcpdump tool, which collected several Gigabytes of benign
HTTP traffic. As shown in Table III, both the web browser
procedure and the collection of HTTP traffic from benign
applications produced around one million requests.

We extracted the seven statistical features from HTTP
requests and responses by Jnetpcap [46] Java library. Because
the values of the features are in different ranges, we performed
feature normalization by re-scaling feature values according to
the following equation:

x
∗

i =
xi −min(xi)

max(xi)−min(xi)
(1)

2https://github.com/egirault/googleplay-api

where the min and max are computed across the whole dataset.

B. Evaluation of the proposed system

To evaluate the performances of the system, the following
measures have been used:

(A) Cohesion:

The cohesion of a cluster Ci measures the average sim-
ilarity between two samples in the cluster with a value
between zero and one. It will be maximum (one) when
the malware samples in a cluster belong to the same
family, i.e., when they share the same label. The value
zero, on the other hand, indicates that the malware samples
are from different families. Whereas the HTTP traffic is
similar according to the features employed, the labels of
the samples are different. The average value has been
computed only for those clusters that contain at least
two malware samples. In fact, clusters containing just
one malware sample have a cohesion equal to one by
definition, and including them would mistakenly bias the
final result.

(B) Separation:

The separation between two clusters Ci and Cj measures
the average family label distance between malware be-
longing to Ci and malware belonging to Cj . This gives us
an indication about whether the malware samples in two
different clusters belong to different malware families or
not. In order to understand how much the whole of clusters
are well separated, instead of calculating the average of the
separation between clusters, we calculate the percentage
of the number of clusters that have a separation above
a threshold. The detailed definitions of the measures of
cohesion and separation can be found in [37].

(C) Detection rate:

The detection rate measures the percentage of malware
that is detected by relying on the signatures extracted
by the clusters. The detection rate is calculated for each
value of the radius parameters that controls the number of
generated clusters in the BIRCH algorithm. The extracted
signatures are then included in Snort, [47] which is used
to process network traces produced by malware samples
and legitimate apps. Then, the alerts are collected and the
detection rate is calculated as follows:

D.R.(%) =
Nmalware

N
∗ 100 (2)

where Nmalware is the number of samples for which Snort
generates at least one alert, and N is the total number of
samples.

(D) False positive rate:

The false positive measures the percentages of false alerts
that the IDS outputs according to the signatures extracted
from the clusters, and it is computed according to the
following formula:

F.P.(%) =
Nalerts

Nrequests

∗ 100 (3)

where Nalerts is the sum of all alerts and Nrequests is the
number of all the requests.



C. Experimental Results and Discussion

1) Cohesion vs. Separation: We carried out the experi-
ments by running the complete two-step clustering algorithm.
First, we run BIRCH on the statistical features, and we applied
the single-linkage hierarchical algorithm to refine the cluster-
ing result of the first step. Then, we compared these results
with the ones obtained by running only the BIRCH algorithm
on the statistical features. The metrics used to compare the
results are Cohesion and Separation. We computed these two
metrics for 16 values of the R parameter, i.e., the radius that
controls the number of clusters generated by BIRCH in the
range from 10-7 to 100.

Surprisingly, we noticed that using the two-step algorithm
leads to the same Cohesion and Separation values that are
obtained when using BIRCH stand-alone. Figure 1 shows the
values of the average Cohesion of all clusters for different
values of radius R used in the experiments. Cohesion exhibits
only small variations with different values of the radius. In
particular, the average Cohesion is around 0.95 for values of
the radius lower than 10-3, and it slightly decreases in the
interval between 10-3 and 5 × 10-1. From 0.88, the average
Cohesion increases again. Achieving high Cohesion means
that the malware inside each cluster are very similar to each
other and therefore they are properly clustered in the same
family. However, we will see that this is not enough to
produce reliable malware signatures. Figure 2 shows the values
of the Separation index. The percentage of pairs of clusters
with a separation index higher than 0.1 ranges from 84.01%
to 96.66%. Attaining high Separation values means that the
clusters are better separated. By examining the two figures,
it turns out that the best trade-off between Cohesion and
Separation is for values of the radius between 0.5 and 1.

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
00.7

0.75

0.8

0.85

0.9

0.95

1
Cohesion

Radius

C
I

Figure 1. The average value of the cohesion indexes CI.

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
070

75

80

85

90

95

Separation

Radius

%
 o

f S
I >

 0
.1

Figure 2. The percentage of pair of clusters with a separation index SI higher
than 0.1.

2) Detection Rate vs. False Positive Rate: To compute the
detection rate and the false positive rate, we extracted the
malware signatures (which are a part of the request URL)

from the clusters. In the experiments, we extracted different
signatures for three different values of the minimum (Min)
length of the signatures, i.e., 5, 10, and 15. Some examples
are shown below :
Sig1: content:”POST”; distance:0; nocase; content:”/ad”;
distance:0; nocase;
The above signature has length 3, which is not in none of
Min 5, 10, and 15 categories.
Sig2: content:”POST”; distance:0; nocase; con-
tent:”/aar.do”; distance:0; nocase;
The above signature has length 7, which is in Min 5 category
but not in 10 and 15 categories.
Sig3: content:”POST”; distance:0; nocase; con-
tent:”/api/proxy”; distance:0; nocase;
The above signature has length 10, which is in Min 5 and 10
categories but not in the Min 15 category.
Sig4: content:”GET”; distance:0; nocase; con-
tent:”/adv/d?t=135782568”; distance:0; nocase;
The above signature has length 18, which is in all of Min 5,
10, and 15 categories.

The detection rate calculated for the three different signa-
ture lengths and for the values of the radius reported in the
previous subsection are shown in Figure 3. The values of the
detection rate are quite high, and allow for precisely detecting
the network traffic generated by malicious applications. The
false positive rate accounts for the specificity of the signatures,
and it is computed to evaluate the fraction of benign HTTP
requests that match with the signatures. The results are shown
in Figure 5. Both the detection and false positive rates do
not improve if the two step clustering is employed instead of
the stand-alone BIRCH (see Figure 4 and Figure 6). Although
achieving lower Cohesion and higher number of rules in the
range of 10−3 and 100 could lead to producing more signatures
with less integrity, it could significantly worsen the false
positive rate.

The appropriate set of signatures are those that allow
attaining a high detection rate and low false positives. To this
end, we observe that the best values for the detection rate (very
close to 100%) were obtained by signatures with minimum
length equal to five for all values of the radius. However, if
we take into account the corresponding values for the false
positive rate, it turns out that the best trade-off is reached when
the radius = 0.9, which allows to attain a false positive rate of
around 7%.

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
00

20

40

60

80

100
Detection Rate (%)

Radius

D
.R

. (
%

)

 

 

MIN−SIG−LEN=5
MIN−SIG−LEN=10
MIN−SIG−LEN=15

Figure 3. The percentage of detection rate D.R. (%) obtained with different
set of signatures and different values of the radius, by only doing coarse-
grained clustering.



10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
00

20

40

60

80

100
Detection Rate (%)

Radius

D
.R

. (
%

)

 

 

MIN−SIG−LEN=5
MIN−SIG−LEN=10
MIN−SIG−LEN=15

Figure 4. The percentage of detection rate D.R. (%) obtained with different
set of signatures and different values of the radius, by doing fine-grained
clustering in addition to coarse-grained clustering.

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
00

5

10

15

20

25

30

35

40
False Positive Rate

Radius

F
.P

.R
. (

%
)

 

 

MIN−SIG−LEN=5
MIN−SIG−LEN=10
MIN−SIG−LEN=15

Figure 5. The percentage of false positive rate F.P.R. (%) obtained with
different set of signatures and different values of the radius, by only doing
coarse-grained clustering.

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
00

5

10

15

20

25

30

35

40
False Positive Rate

Radius

F
.P

.R
. (

%
)

 

 

MIN−SIG−LEN=5
MIN−SIG−LEN=10
MIN−SIG−LEN=15

Figure 6. The percentage of false positive rate F.P.R. (%) obtained with
different set of signatures and different values of the radius, by doing fine-
grained clustering in addition to coarse-grained clustering.

3) Number of Clusters and Number of Signatures: Al-
though the efficiency of the detection system is important,
the number of clusters (Figure 7) and signatures (Figure 8)
need to be evaluated. The number of clusters is correlated to
the value of the radius. If the radius is large, the number
of clusters is small, meaning that each cluster is likely to
contain malware from different families. In our experiments,
the number of clusters for a radius value = 10-7 is 501, whereas
the number of clusters is 5 for radius = 0.9. As we mentioned,
the Snort rules are based on the signatures generated from the
clusters, and they are correlated with the number of signatures.
A large number of clusters may translate into a redundant
number of signatures, as malware belonging to the same family
may be grouped in different clusters. Consequently, even if the
detection rate does not vary, the false positive rate and the IDS
speed exhibit lower performances.

Platform Get Post Url Param Sent Response

Windows 19.1(183.1) 1.1(10.3) 51.9(58.0) 1.4(3.3) 84.5(201.5) 81E+4(88E+5)

Android 3.8(6.1) 2.8(3.3) 87.9(98) 4.4(6.5) 73.7(97.0) 88E+2(15E+4)

Table IV. COMPARISON ON AVERAGE (STANDARD DEVIATION) FOR

EACH STATISTICAL FEATURE

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
00

100

200

300

400

500
Number of Clusters

Radius

N
um

. C
lu

st
er

s

Figure 7. The total number of clusters (Num. clusters) for different values
of the radius.

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
00

50

100

150

200

250

300
Number of Rules

Radius

N
um

. R
ul

es

 

 

MIN−SIG−LEN=5
MIN−SIG−LEN=10
MIN−SIG−LEN=15

Figure 8. The total number of the Snort rules (Num. rules) obtained from
the signatures for different radius values.

D. Comparisons with HTTP based clustering for traditional
desktop malware

As Android has been largely adopted only recently com-
pared to traditional desktop systems, the number of available
Android malware samples that generate malicious HTTP traffic
are fewer than the analogous desktop malware samples. In
general, compared to the work on traditional desktop malware
[9], clustering Android malware samples by HTTP traffic
traces shows that: (i) the value of cohesion is higher, (ii)
the value of separation is lower, (iii) the detection rate is
higher, (iv) and the false positive rate is lower. Thus, grouping
malware samples according to the generated HTTP traffic they
produce is effective not only to detect malware families, but
also to produce effective malware signatures. In order to show
the basic motivation behind this behavior, we computed the
mean and the variance of each statistical feature for malware
samples belonging to both platforms. We show this comparison
in Table IV.

Windows malware exhibit a higher mean value on features
such as the number of Get requests, and the length of sent
and response data. Conversely, the number of Post requests
and parameters, and the length of URL are larger for the
Android malware. The limited capability of mobile devices
compared to desktop PCs can be the reason for the low
interaction of mobile malware with their C&C servers. In
other words, desktop applications tend to produce multiple
HTTP requests to perform an action, and Android apps tend to
produce one long HTTP request containing all the information.
Another possibility is that mobile botnets have to control less



functionalities and applications compared to Desktop ones.
For example, the higher value of the average Get requests
for Desktop malware shows that such malware resort to
more computational resources to generate as many requests
as possible. Consequently, they do not need to create long
URLs with different parameters. Conversely, as mobile devices
have limited computational capabilities, malicious applications
are developed to keep the number of requests as small as
possible. Thus, they are forced to enrich their requests by using
a larger number of parameters. In addition, the analysis of
the standard deviation values allows for a better understanding
of the diversity of requests. As an example, the diversity of
the number of requests and of the amount of transferred data
is much higher in Desktop malware compared to Android
malware. This examples provide reasons for the effectiveness
of the clustering by just using the statistical traffic features, and
for the higher performances in malware detection for mobile
devices compared to desktop systems.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we performed an analysis of Android bot-
nets that employ HTTP traffic for their communications. By
clustering the generated network traffic of different Android
malware with the usage of an algorithm originally developed
for grouping desktop malware, we showed that the samples
belonging to the same malware family have similar HTTP
traffic statistics. Moreover, a small number of signatures can be
extracted from the clusters, allowing to achieve a good trade-
off between the detection rate and the false positive rate. The
causes of this behavior can be related to the higher uniformity
of the HTTP traffic generated by Android botnet malware
compared to traffic generated by Desktop botnet malware.

ACKNOWLEDGEMENTS

This work has been partly supported by the project “Com-
putational quantum structures at the service of pattern recogni-
tion: modeling uncertainty“ [CRP-59872] funded by Regione
Autonoma della Sardegna, L.R. 7/2007, Bando 2012. Davide
Maiorca gratefully acknowledges Sardinia Regional Govern-
ment for the financial support of his PhD scholarship (P.O.R.
Sardegna F.S.E. Operational Programme of the Autonomous
Region of Sardinia, European Social Fund 2007-2013 - Axis
IV Human Resources, Objective l.3, Line of Activity l.3.1.).

REFERENCES

[1] A. Bose and K. G. Shin, “Proactive security for mobile messaging
networks,” in Proceedings of the 5th ACM Workshop on Wireless

Security, ser. WiSe ’06. New York, NY, USA: ACM, 2006, pp. 95–104.
[Online]. Available: http://doi.acm.org/10.1145/1161289.1161307

[2] R. Racic, D. Ma, and H. Chen, “Exploiting mms vulnerabilities to
stealthily exhaust mobile phone’s battery,” in Securecomm and Work-

shops, 2006, Aug 2006, pp. 1–10.

[3] J. W. Mickens and B. D. Noble, “Modeling epidemic
spreading in mobile environments,” in Proceedings of the 4th

ACM Workshop on Wireless Security, ser. WiSe ’05. New
York, NY, USA: ACM, 2005, pp. 77–86. [Online]. Available:
http://doi.acm.org/10.1145/1080793.1080806

[4] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “Botminer: Clustering
analysis of network traffic for protocol- and structure-independent
botnet detection,” in Proceedings of the 17th Conference

on Security Symposium, ser. SS’08. Berkeley, CA, USA:
USENIX Association, 2008, pp. 139–154. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1496711.1496721

[5] Sophos, “Security threat report,” 2014. [Online]. Avail-
able: http://www.sophos.com/en-us/medialibrary/PDFs/other/sophos-
security-threat-report-2014.pdf

[6] R. Nigam, “A timeline of mobile botnets,”
Virus Bulletin, March 2015. [Online]. Available:
https://www.virusbtn.com/virusbulletin/archive/2015/03/vb201503-
mobile-botnets

[7] S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song, “Networkpro-
filer: Towards automatic fingerprinting of android apps,” in INFOCOM,
2013 Proceedings IEEE, April 2013, pp. 809–817.

[8] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Profiledroid:
Multi-layer profiling of android applications,” in Proceedings

of the 18th Annual International Conference on Mobile

Computing and Networking, ser. Mobicom ’12. New York,
NY, USA: ACM, 2012, pp. 137–148. [Online]. Available:
http://doi.acm.org/10.1145/2348543.2348563

[9] R. Perdisci, D. Ariu, and G. Giacinto, “Scalable fine-grained
behavioral clustering of http-based malware,” Computer Networks,
vol. 57, no. 2, pp. 487–500, 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.comnet.2012.06.022

[10] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang, “The impact of vendor
customizations on android security,” in Proceedings of the 2013 ACM

SIGSAC Conference on Computer &#38; Communications Security,
ser. CCS ’13. New York, NY, USA: ACM, 2013, pp. 623–634.
[Online]. Available: http://doi.acm.org/10.1145/2508859.2516728

[11] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing
inter-application communication in android,” in Proceedings of the

9th International Conference on Mobile Systems, Applications, and
Services, ser. MobiSys ’11. New York, NY, USA: ACM, 2011, pp. 239–
252. [Online]. Available: http://doi.acm.org/10.1145/1999995.2000018

[12] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and Y. L.
Traon, “Effective inter-component communication mapping in android:
An essential step towards holistic security analysis,” in Presented as
part of the 22nd USENIX Security Symposium (USENIX Security 13).
Washington, D.C.: USENIX, 2013, pp. 543–558. [Online]. Avail-
able: https://www.usenix.org/conference/usenixsecurity13/technical-
sessions/presentation/octeau

[13] M. C. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic detection
of capability leaks in stock android smartphones,” in 19th Annual

Network and Distributed System Security Symposium, NDSS. San
Diego, California, USA: The Internet Society, February 2012.

[14] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: Statically vetting
android apps for component hijacking vulnerabilities,” in Proceedings

of the 2012 ACM Conference on Computer and Communications

Security, ser. CCS ’12. New York, NY, USA: ACM, 2012, pp. 229–
240. [Online]. Available: http://doi.acm.org/10.1145/2382196.2382223

[15] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou, “Fast, scalable
detection of ”piggybacked” mobile applications,” in Proceedings of the

Third ACM Conference on Data and Application Security and Privacy,
ser. CODASPY ’13. New York, NY, USA: ACM, 2013, pp. 185–196.
[Online]. Available: http://doi.acm.org/10.1145/2435349.2435377

[16] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged
smartphone applications in third-party android marketplaces,” in
Proceedings of the Second ACM Conference on Data and

Application Security and Privacy, ser. CODASPY ’12. New
York, NY, USA: ACM, 2012, pp. 317–326. [Online]. Available:
http://doi.acm.org/10.1145/2133601.2133640

[17] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, K. Rieck, and
Siemens, “Drebin: Efficient and explainable detection of android mal-
ware in your pocket,” in Proceedings of the ISOC Network and
Distributed System Security Symposium (NDSS), San Diego, CA, 2014.

[18] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu, “Droidmat:
Android malware detection through manifest and api calls tracing,” in
Information Security (Asia JCIS), 2012 Seventh Asia Joint Conference
on, Aug 2012, pp. 62–69.

[19] C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. Porras, “Droidminer:
Automated mining and characterization of fine-grained malicious be-
haviors in android applications,” in 19th European Symposium on

Research in Computer Security (ESORICS’14), ser. Lecture Notes in
Computer Science. Wroclaw, Poland: Springer Berlin Heidelberg,
2014.



[20] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: Behavior-
based malware detection system for android,” in Proceedings of the 1st

ACM Workshop on Security and Privacy in Smartphones and Mobile
Devices, ser. SPSM ’11. New York, NY, USA: ACM, 2011, pp. 15–26.
[Online]. Available: http://doi.acm.org/10.1145/2046614.2046619

[21] A. Reina, A. Fattori, and L. Cavallaro, “A system call-centric analysis
and stimulation technique to automatically reconstruct android malware
behaviors,” in Proceedings of the 6th European Workshop on System

Security (EUROSEC), Prague, Czech Republic, April 2013.

[22] L. K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing
the os and dalvik semantic views for dynamic android malware
analysis,” in Proceedings of the 21st USENIX Conference on
Security Symposium, ser. Security’12. Berkeley, CA, USA:
USENIX Association, 2012, pp. 29–29. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2362793.2362822

[23] V. Rastogi, Y. Chen, and W. Enck, “Appsplayground: Automatic
security analysis of smartphone applications,” in Proceedings of the

Third ACM Conference on Data and Application Security and Privacy,
ser. CODASPY ’13. New York, NY, USA: ACM, 2013, pp. 209–220.
[Online]. Available: http://doi.acm.org/10.1145/2435349.2435379

[24] B. Amos, H. Turner, and J. White, “Applying machine learning clas-
sifiers to dynamic android malware detection at scale,” in Wireless

Communications and Mobile Computing Conference (IWCMC), 2013

9th International, July 2013, pp. 1666–1671.

[25] F. Li, N. Clarke, M. Papadaki, and P. Dowland, “Behaviour profiling
on mobile devices,” in Emerging Security Technologies (EST), 2010

International Conference on, Sept 2010, pp. 77–82.

[26] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth, “Taintdroid: An information-flow
tracking system for realtime privacy monitoring on smartphones,”
in Proceedings of the 9th USENIX Conference on Operating

Systems Design and Implementation, ser. OSDI’10. Berkeley, CA,
USA: USENIX Association, 2010, pp. 1–6. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1924943.1924971

[27] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These
aren’t the droids you’re looking for: Retrofitting android to protect
data from imperious applications,” in Proceedings of the 18th ACM

Conference on Computer and Communications Security, ser. CCS ’11.
New York, NY, USA: ACM, 2011, pp. 639–652. [Online]. Available:
http://doi.acm.org/10.1145/2046707.2046780

[28] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss,
“”andromaly”: A behavioral malware detection framework for android
devices,” J. Intell. Inf. Syst., vol. 38, no. 1, pp. 161–190, Feb. 2012.
[Online]. Available: http://dx.doi.org/10.1007/s10844-010-0148-x

[29] A. Shabtai, L. Tenenboim-Chekina, D. Mimran, L. Rokach,
B. Shapira, and Y. Elovici, “Mobile malware detection through
analysis of deviations in application network behavior,” Computers
& Security, vol. 43, no. 0, pp. 1 – 18, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167404814000285

[30] F. Narudin, A. Feizollah, N. Anuar, and A. Gani,
“Evaluation of machine learning classifiers for mobile malware
detection,” Soft Computing, pp. 1–15, 2014. [Online]. Available:
http://dx.doi.org/10.1007/s00500-014-1511-6

[31] A. Arora, S. Garg, and S. Peddoju, “Malware detection using network
traffic analysis in android based mobile devices,” in Next Generation

Mobile Apps, Services and Technologies (NGMAST), 2014 Eighth
International Conference on, Sept 2014, pp. 66–71.

[32] A. Tongaonkar, S. Dai, A. Nucci, and D. Song, “Understanding mobile
app usage patterns using in-app advertisements,” in Passive and Active

Measurement, ser. Lecture Notes in Computer Science, M. Roughan
and R. Chang, Eds. Springer Berlin Heidelberg, 2013, vol. 7799, pp.
63–72.

[33] A. Zarras, A. Papadogiannakis, R. Gawlik, and T. Holz, “Automated
generation of models for fast and precise detection of http-based
malware,” in 2014 Twelfth Annual International Conference on Privacy,

Security and Trust (PST), July 2014, pp. 249–256.

[34] M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde, “Can’t you hear
me knocking: Identification of user actions on android apps via traffic
analysis,” Fifth ACM Conference on Data and Application Security and

Privacy (CODASPY), 2015.

[35] X. Wu, D. Zhang, X. Su, and W. Li, “Detect repackaged

android application based on http traffic similarity,” Security and

Communication Networks, pp. n/a–n/a, 2015. [Online]. Available:
http://dx.doi.org/10.1002/sec.1170

[36] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: an efficient
data clustering method for very large databases,” in Proceedings of

the 1996 ACM SIGMOD International Conference on Management of
Data, Montreal, Quebec, Canada, June 4-6, 1996., 1996, pp. 103–114.
[Online]. Available: http://doi.acm.org/10.1145/233269.233324

[37] R. Perdisci, W. Lee, and N. Feamster, “Behavioral clustering of
http-based malware and signature generation using malicious network
traces,” in Proceedings of the 7th USENIX Conference on Networked

Systems Design and Implementation, ser. NSDI’10. Berkeley, CA,
USA: USENIX Association, 2010, pp. 26–26. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855711.1855737

[38] J. Newsome, B. Karp, and D. X. Song, “Polygraph: Automatically
generating signatures for polymorphic worms,” in 2005 IEEE

Symposium on Security and Privacy (S&P 2005), 8-11 May

2005, Oakland, CA, USA, 2005, pp. 226–241. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/SP.2005.15

[39] X. J. Y. Zhou, “Android malware genome project,”
http://www.malgenomeproject.org, 2012.

[40] M. Parkour, “Contagio mobile - mobile malware mini dump,”
http:///contagiominidump.blogspot.it/, 2012.

[41] “Virustotal - free online virus, malware and url scanner,”
https://www.virustotal.com/, 2014.

[42] “Copperdroid,” http://copperdroid.isg.rhul.ac.uk/copperdroid/, 2014.

[43] “Anubis - free online malware analysis for unknown binaries (windows
executable or android apk),” https://anubis.iseclab.org, 2014.

[44] “Tracedroid - free online dynamic android app nalysis,”
http://tracedroid.few.vu.nl, 2014.

[45] “Uiautomator - android framework,”
http://developer.android.com/tools/help/uiautomator/index.html, 2014.

[46] “jnetpcap opensource — protocol analysis sdk,” http://jnetpcap.com/,
2014.

[47] “Snort - open source network intrusion prevention system,”
https://www.snort.org, 2014.


