Information Fusion in Content Based Image Retrieval: A Comprehensive Overview

TitleInformation Fusion in Content Based Image Retrieval: A Comprehensive Overview
Publication TypeJournal Article
Year of Publication2017
AuthorsPiras, L, Giacinto, G
JournalInformation Fusion
Start Page50
Date Published09/2017
ISSN Number1566-2535

An ever increasing part of communication between persons involve the use of pictures, due to the cheap availability of powerful cameras on smartphones, and the cheap availability of storage space. The rising popularity of social networking applications such as Facebook, Twitter, Instagram, and of instant messaging applications, such as WhatsApp, WeChat, is the clear evidence of this phenomenon, due to the opportunity of sharing in real-time a pictorial representation of the context each individual is living in. The media rapidly exploited this phenomenon, using the same channel, either to publish their reports, or to gather additional information on an event through the community of users. While the real-time use of images is managed through metadata associated with the image (i.e., the timestamp, the geolocation, tags, etc.), their retrieval from an archive might be far from trivial, as an image bears a rich semantic content that goes beyond the description provided by its metadata. It turns out that after more than 20 years of research on Content-Based Image Retrieval (CBIR), the giant increase in the number and variety of images available in digital format is challenging the research community. It is quite easy to see that any approach aiming at facing such challenges must rely on different image representations that need to be conveniently fused in order to adapt to the subjectivity of image semantics. This paper offers a journey through the main information fusion ingredients that a recipe for the design of a CBIR system should include to meet the demanding needs of users

Citation Key1330