Adversarial Biometric Recognition: A Review on Biometric System Security from the Adversarial Machine Learning Perspective

TitleAdversarial Biometric Recognition: A Review on Biometric System Security from the Adversarial Machine Learning Perspective
Publication TypeJournal Article
Year of Publication2015
AuthorsBiggio, B, Fumera, G, Russu, P, Didaci, L, Roli, F
JournalIEEE Signal Processing Magazine
Volume32
Issue5
Pagination31-41
Date Published09/2015
Abstract

In this article, we review previous work on biometric security under a recent framework proposed in the field of adversarial machine learning. This allows us to highlight novel insights on the security of biometric systems when operating in the presence of intelligent and adaptive attackers that manipulate data to compromise normal system operation. We show how this framework enables the categorization of known and novel vulnerabilities of biometric recognition systems, along with the corresponding attacks, countermeasures and defense mechanisms. We report two application examples, respectively showing how to fabricate a more effective face spoofing attack, and how to counter an attack that exploits an unknown vulnerability of an adaptive face recognition system to compromise its face templates.

URLhttp://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7192841
Citation Keybiggio15-spmag
Download: 
AttachmentSize
biggio15-spmag.pdf751.08 KB