Journal Article
A. Demontis, Melis, M., Biggio, B., Maiorca, D., Arp, D., Rieck, K., Corona, I., Giacinto, G., e Roli, F.,
«Yes, Machine Learning Can Be More Secure! A Case Study on Android Malware Detection»,
IEEE Trans. Dependable and Secure Computing, vol 16, n° 4, pagg 711-724, 2019.
(3.61 MB) L. Oneto, Navarin, N., Biggio, B., Errica, F., Micheli, A., Scarselli, F., Bianchini, M., Demetrio, L., Bongini, P., Tacchella, A., e Sperduti, A.,
«Towards learning trustworthily, automatically, and with guarantees on graphs: An overview»,
Neurocomputing, vol 493, pagg 217-243, 2022.
B. Biggio, Fumera, G., Pillai, I., e Roli, F.,
«A survey and experimental evaluation of image spam filtering techniques»,
Pattern Recognition Letters, vol 32, pagg 1436 - 1446, 2011.
(2.12 MB) H. Xiao, Biggio, B., Nelson, B., Xiao, H., Eckert, C., e Roli, F.,
«Support Vector Machines under Adversarial Label Contamination»,
Neurocomputing, Special Issue on Advances in Learning with Label Noise, vol 160, pagg 53-62, 2015.
(2.8 MB) A. Demontis, Melis, M., Biggio, B., Fumera, G., e Roli, F.,
«Super-sparse Learning in Similarity Spaces»,
IEEE Computational Intelligence Magazine, vol 11, n° 4, pagg 36-45, 2016.
(555.22 KB) B. Biggio, Fumera, G., Marcialis, G. L., e Roli, F.,
«Statistical Meta-Analysis of Presentation Attacks for Secure Multibiometric Systems»,
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol 39, n° 3, pagg 561-575, 2017.
(5.7 MB) B. Biggio, Fumera, G., e Roli, F.,
«Security evaluation of pattern classifiers under attack»,
IEEE Transactions on Knowledge and Data Engineering, vol 26, n° 4, pagg 984-996, 2014.
(1.35 MB) B. Biggio, Akhtar, Z., Fumera, G., Marcialis, G. L., e Roli, F.,
«Security evaluation of biometric authentication systems under real spoofing attacks»,
IET Biometrics, vol 1, n° 1, pagg 11-24, 2012.
(3.21 MB) M. Pintor, Demetrio, L., Sotgiu, A., Melis, M., Demontis, A., e Biggio, B.,
«secml: A Python Library for Secure and Explainable Machine Learning»,
SoftwareX, 2022.
S. Rota Bulò, Biggio, B., Pillai, I., Pelillo, M., e Roli, F.,
«Randomized Prediction Games for Adversarial Machine Learning»,
IEEE Transactions on Neural Networks and Learning Systems, vol 28, n° 11, pagg 2466-2478, 2017.
(1.52 MB)
(256.21 KB) B. Biggio, Fumera, G., e Roli, F.,
«Pattern Recognition Systems under Attack: Design Issues and Research Challenges»,
Int'l J. Patt. Recogn. Artif. Intell., vol 28, n° 7, pag 1460002, 2014.
(1.41 MB) L. Demetrio, Biggio, B., Lagorio, G., Roli, F., e Armando, A.,
«Functionality-Preserving Black-Box Optimization of Adversarial Windows Malware»,
IEEE Transactions on Information Forensics and Security, vol 16, pagg 3469-3478, 2021.
F. Crecchi, Melis, M., Sotgiu, A., Bacciu, D., e Biggio, B.,
«FADER: Fast adversarial example rejection»,
Neurocomputing, vol 470, pagg 257-268, 2022.
P. Temple, Perrouin, G., Acher, M., Biggio, B., Jézéquel, J. - M., e Roli, F.,
«Empirical Assessment of Generating Adversarial Configurations for Software Product Lines»,
Empirical Software Engineering, vol 26, n° 6, 2021.
(1.29 MB) M. Melis, Scalas, M., Demontis, A., Maiorca, D., Biggio, B., Giacinto, G., e Roli, F.,
«Do Gradient-Based Explanations Tell Anything About Adversarial Robustness to Android Malware?»,
International Journal of Machine Learning and Cybernetics, vol 13, pagg 217-232, 2022.
(1.2 MB) D. Maiorca e Biggio, B.,
«Digital Investigation of PDF Files: Unveiling Traces of Embedded Malware»,
IEEE Security and Privacy: Special Issue on Digital Forensics, vol 17, n° 1, pagg 63-71, 2019.
(838.95 KB) A. Sotgiu, Demontis, A., Melis, M., Biggio, B., Fumera, G., Feng, X., e Roli, F.,
«Deep Neural Rejection against Adversarial Examples»,
EURASIP Journal on Information Security, vol 5, 2020.