M. Melis, Scalas, M., Demontis, A., Maiorca, D., Biggio, B., Giacinto, G., e Roli, F.,
«Do Gradient-Based Explanations Tell Anything About Adversarial Robustness to Android Malware?»,
International Journal of Machine Learning and Cybernetics, vol 13, pagg 217-232, 2022.
(1.2 MB) E. Ledda, Putzu, L., Delussu, R., Fumera, G., e Roli, F.,
«On the Evaluation of Video-Based Crowd Counting Models»,
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol 13233 LNCS. pagg 301 – 311, 2022.
A. Sotgiu, Pintor, M., e Biggio, B.,
«Explainability-Based Debugging of Machine Learning for Vulnerability Discovery», in
Proc. 17th International Conference on Availability, Reliability and Security, New York, NY, USA, 2022.
F. Crecchi, Melis, M., Sotgiu, A., Bacciu, D., e Biggio, B.,
«FADER: Fast adversarial example rejection»,
Neurocomputing, vol 470, pagg 257-268, 2022.