Publications

Export 90 results:
Filters: Author is Battista Biggio  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
I
F. Roli, Biggio, B., Fumera, G., Pillai, I., and Satta, R., Image Spam Filtering by Detection of Adversarial Obfuscated Text, in NIPS Workshop on Machine Learning in Adversarial Environments for Computer Security, Whistler, British Columbia, Canada, 2007. (361.97 KB)
B. Biggio, Fumera, G., Pillai, I., and Roli, F., Image Spam Filtering by Content Obscuring Detection, in Fourth Conference on Email and Anti-Spam (CEAS 2007), Microsoft Research Silicon Valley, Mountain View, California, 2007. (486.14 KB)
H
A. Emanuele Cinà, Vascon, S., Demontis, A., Biggio, B., Roli, F., and Pelillo, M., The Hammer and the Nut: Is Bilevel Optimization Really Needed to Poison Linear Classifiers?, in International Joint Conference on Neural Networks, (IJCNN) 2021, Shenzhen, China, 2021, pp. 1–8.
F
L. Demetrio, Biggio, B., Lagorio, G., Roli, F., and Armando, A., Functionality-Preserving Black-Box Optimization of Adversarial Windows Malware, IEEE Transactions on Information Forensics and Security, vol. 16, pp. 3469-3478, 2021.
H. Xiao, Biggio, B., Brown, G., Fumera, G., Eckert, C., and Roli, F., Is Feature Selection Secure against Training Data Poisoning?, in 32nd Int'l Conf. on Machine Learning (ICML) - JMLR W&CP, 2015, vol. 32, pp. 1689-1698. (1.54 MB)
M. Pintor, Roli, F., Brendel, W., and Biggio, B., Fast Minimum-norm Adversarial Attacks through Adaptive Norm Constraints, in NeurIPS, 2021.
M. Melis, Piras, L., Biggio, B., Giacinto, G., Fumera, G., and Roli, F., Fast Image Classification with Reduced Multiclass Support Vector Machines, in 18th Int'l Conf. on Image Analysis and Processing, Genova, Italy, 2015, vol. Image Analysis and Processing (ICIAP 2015), pp. 78-88. (829.37 KB)
F. Crecchi, Melis, M., Sotgiu, A., Bacciu, D., and Biggio, B., FADER: Fast adversarial example rejection, Neurocomputing, vol. 470, pp. 257-268, 2022.
E
L. Demetrio, Biggio, B., Lagorio, G., Roli, F., and Armando, A., Explaining Vulnerabilities of Deep Learning to Adversarial Malware Binaries, in 3rd Italian Conference on Cyber Security, ITASEC 2019, Pisa, Italy, 2019, vol. 2315. (801.85 KB)
M. Melis, Maiorca, D., Biggio, B., Giacinto, G., and Roli, F., Explaining Black-box Android Malware Detection, in 26th European Signal Processing Conference (EUSIPCO '18), Rome, Italy, 2018, pp. 524-528. (431.78 KB)
A. Sotgiu, Pintor, M., and Biggio, B., Explainability-Based Debugging of Machine Learning for Vulnerability Discovery, in Proc. 17th International Conference on Availability, Reliability and Security, New York, NY, USA, 2022.
B. Biggio, Corona, I., Maiorca, D., Nelson, B., Srndic, N., Laskov, P., Giacinto, G., and Roli, F., Evasion attacks against machine learning at test time, in European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), 2013, vol. 8190, pp. 387-402. (473.78 KB)
B. Biggio, Fumera, G., Pillai, I., Roli, F., and Satta, R., Evading SpamAssassin with obfuscated text images, Virus Bulletin, no. 11-2007, 2007. (689 KB)
B. Biggio, Fumera, G., and Roli, F., Evade Hard Multiple Classifier Systems, in Workshop on Supervised and Unsupervised Ensemble Methods and Their Applications (SUEMA 2008), Patras, Greece, 2008. (185.01 KB)
B. Biggio, Fumera, G., and Roli, F., Evade Hard Multiple Classifier Systems, in Supervised and Unsupervised Ensemble Methods and Their Applications, vol. 245, O. Okun and Valentini, G. Springer Berlin / Heidelberg, 2009, pp. 15-38. (562.89 KB)
P. Temple, Perrouin, G., Acher, M., Biggio, B., Jézéquel, J. - M., and Roli, F., Empirical Assessment of Generating Adversarial Configurations for Software Product Lines, Empirical Software Engineering, vol. 26, no. 6, 2021. (1.29 MB)
D
M. Melis, Scalas, M., Demontis, A., Maiorca, D., Biggio, B., Giacinto, G., and Roli, F., Do Gradient-Based Explanations Tell Anything About Adversarial Robustness to Android Malware?, International Journal of Machine Learning and Cybernetics, vol. 13, pp. 217-232, 2022. (1.2 MB)
D. Maiorca and Biggio, B., Digital Investigation of PDF Files: Unveiling Traces of Embedded Malware, IEEE Security and Privacy: Special Issue on Digital Forensics, vol. 17, no. 1, pp. 63-71, 2019. (838.95 KB)
D. Maiorca, Russu, P., Corona, I., Biggio, B., and Giacinto, G., Detection of Malicious Scripting Code through Discriminant and Adversary-Aware API Analysis, in 1st Italian Conference on CyberSecurity (ITASEC), 2017, vol. 1816, pp. 96-105. (371.53 KB)
M. Ahmadi, Biggio, B., Arzt, S., Ariu, D., and Giacinto, G., Detecting Misuse of Google Cloud Messaging in Android Badware, in 6th Workshop on Security and Privacy in Smartphones and Mobile Devices (SPSM), Vienna, Austria, 2016, pp. 103-112. (626.38 KB)
F. Crecchi, Bacciu, D., and Biggio, B., Detecting Adversarial Examples through Nonlinear Dimensionality Reduction, in 27th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning - ESANN '19, 2019, pp. 483-488. (552.39 KB)
B. Biggio, Fumera, G., and Roli, F., Design of Robust Classifiers for Adversarial Environments, in IEEE International Conference on Systems, Man, and Cybernetics (SMC 2011), Anchorage, Alaska, USA, 2011, pp. 977–982. (328.68 KB)
I. Corona, Biggio, B., Contini, M., Piras, L., Corda, R., Mereu, M., Mureddu, G., Ariu, D., and Roli, F., DeltaPhish: Detecting Phishing Webpages in Compromised Websites, 22nd European Symposium on Research in Computer Security (ESORICS), vol. 10492. Springer International Publishing, Norway, September 11-15, 2017, pp. 370–388, 2017. (4.13 MB)
P. Piredda, Ariu, D., Biggio, B., Corona, I., Piras, L., Giacinto, G., and Roli, F., Deepsquatting: Learning-based Typosquatting Detection at Deeper Domain Levels, in 16th International Conference of the Italian Association for Artificial Intelligence (AI*IA 2017), 2017, vol. 10640 of LNCS, pp. 347-358. (1.21 MB)
A. Sotgiu, Demontis, A., Melis, M., Biggio, B., Fumera, G., Feng, X., and Roli, F., Deep Neural Rejection against Adversarial Examples, EURASIP Journal on Information Security, vol. 5, 2020.

Pages