Publications

Export 90 results:
Filters: Author is Battista Biggio  [Clear All Filters]
Thesis
B. Biggio, Adversarial Pattern Classification, University of Cagliari, Cagliari (Italy), 2010. (2.65 MB)
Magazine Article
B. Biggio, Fumera, G., Pillai, I., Roli, F., and Satta, R., Evading SpamAssassin with obfuscated text images, Virus Bulletin, no. 11-2007, 2007. (689 KB)
Journal Article
A. Demontis, Melis, M., Biggio, B., Maiorca, D., Arp, D., Rieck, K., Corona, I., Giacinto, G., and Roli, F., Yes, Machine Learning Can Be More Secure! A Case Study on Android Malware Detection, IEEE Trans. Dependable and Secure Computing, vol. 16, no. 4, pp. 711-724, 2019. (3.61 MB)
B. Biggio and Roli, F., Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning, Pattern Recognition, vol. 84, pp. 317-331, 2018. (3.76 MB)
L. Oneto, Navarin, N., Biggio, B., Errica, F., Micheli, A., Scarselli, F., Bianchini, M., Demetrio, L., Bongini, P., Tacchella, A., and Sperduti, A., Towards learning trustworthily, automatically, and with guarantees on graphs: An overview, Neurocomputing, vol. 493, pp. 217-243, 2022.
D. Maiorca, Biggio, B., and Giacinto, G., Towards Adversarial Malware Detection: Lessons Learned from PDF-based Attacks, ACM Computing Surveys, vol. 52, no. 4, 2019. (1.21 MB)
B. Biggio, Fumera, G., Pillai, I., and Roli, F., A survey and experimental evaluation of image spam filtering techniques, Pattern Recognition Letters, vol. 32, pp. 1436 - 1446, 2011. (2.12 MB)
H. Xiao, Biggio, B., Nelson, B., Xiao, H., Eckert, C., and Roli, F., Support Vector Machines under Adversarial Label Contamination, Neurocomputing, Special Issue on Advances in Learning with Label Noise, vol. 160, pp. 53-62, 2015. (2.8 MB)
A. Demontis, Melis, M., Biggio, B., Fumera, G., and Roli, F., Super-sparse Learning in Similarity Spaces, IEEE Computational Intelligence Magazine, vol. 11, no. 4, pp. 36-45, 2016. (555.22 KB)
B. Biggio, Fumera, G., Marcialis, G. L., and Roli, F., Statistical Meta-Analysis of Presentation Attacks for Secure Multibiometric Systems, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 3, pp. 561-575, 2017. (5.7 MB)
B. Biggio, Fumera, G., and Roli, F., Security evaluation of pattern classifiers under attack, IEEE Transactions on Knowledge and Data Engineering, vol. 26, no. 4, pp. 984-996, 2014. (1.35 MB)
B. Biggio, Akhtar, Z., Fumera, G., Marcialis, G. L., and Roli, F., Security evaluation of biometric authentication systems under real spoofing attacks, IET Biometrics, vol. 1, no. 1, pp. 11-24, 2012. (3.21 MB)
M. Pintor, Demetrio, L., Sotgiu, A., Melis, M., Demontis, A., and Biggio, B., secml: A Python Library for Secure and Explainable Machine Learning, SoftwareX, 2022.
S. Rota Bulò, Biggio, B., Pillai, I., Pelillo, M., and Roli, F., Randomized Prediction Games for Adversarial Machine Learning, IEEE Transactions on Neural Networks and Learning Systems, vol. 28, no. 11, pp. 2466-2478, 2017. (1.52 MB) (256.21 KB)
B. Biggio, Fumera, G., and Roli, F., Pattern Recognition Systems under Attack: Design Issues and Research Challenges, Int'l J. Patt. Recogn. Artif. Intell., vol. 28, no. 7, p. 1460002, 2014. (1.41 MB)
B. Biggio, Fumera, G., and Roli, F., Multiple Classifier Systems for Robust Classifier Design in Adversarial Environments, Journal of Machine Learning and Cybernetics, vol. 1, pp. 27–41, 2010. (844.91 KB)
L. Demetrio, Biggio, B., Lagorio, G., Roli, F., and Armando, A., Functionality-Preserving Black-Box Optimization of Adversarial Windows Malware, IEEE Transactions on Information Forensics and Security, vol. 16, pp. 3469-3478, 2021.
F. Crecchi, Melis, M., Sotgiu, A., Bacciu, D., and Biggio, B., FADER: Fast adversarial example rejection, Neurocomputing, vol. 470, pp. 257-268, 2022.
P. Temple, Perrouin, G., Acher, M., Biggio, B., Jézéquel, J. - M., and Roli, F., Empirical Assessment of Generating Adversarial Configurations for Software Product Lines, Empirical Software Engineering, vol. 26, no. 6, 2021. (1.29 MB)
M. Melis, Scalas, M., Demontis, A., Maiorca, D., Biggio, B., Giacinto, G., and Roli, F., Do Gradient-Based Explanations Tell Anything About Adversarial Robustness to Android Malware?, International Journal of Machine Learning and Cybernetics, vol. 13, pp. 217-232, 2022. (1.2 MB)
D. Maiorca and Biggio, B., Digital Investigation of PDF Files: Unveiling Traces of Embedded Malware, IEEE Security and Privacy: Special Issue on Digital Forensics, vol. 17, no. 1, pp. 63-71, 2019. (838.95 KB)
A. Sotgiu, Demontis, A., Melis, M., Biggio, B., Fumera, G., Feng, X., and Roli, F., Deep Neural Rejection against Adversarial Examples, EURASIP Journal on Information Security, vol. 5, 2020.
G. Ennas, Biggio, B., and Di Guardo, M. Chiara, Data-driven Journal Meta-ranking in Business and Management, Scientometrics, pp. 1-19, 2015. (896.37 KB)
H. - Y. Lin and Biggio, B., Adversarial Machine Learning: Attacks From Laboratories to the Real World, Computer, vol. 54, pp. 56-60, 2021.

Pages