Publications

Export 90 results:
Filters: Author is Battista Biggio  [Clear All Filters]
2021
L. Demetrio, Coull, S. E., Biggio, B., Lagorio, G., Armando, A., and Roli, F., Adversarial EXEmples: A Survey and Experimental Evaluation of Practical Attacks on Machine Learning for Windows Malware Detection, ACM Trans. Priv. Secur., vol. 24, 2021.
H. - Y. Lin and Biggio, B., Adversarial Machine Learning: Attacks From Laboratories to the Real World, Computer, vol. 54, pp. 56-60, 2021.
P. Temple, Perrouin, G., Acher, M., Biggio, B., Jézéquel, J. - M., and Roli, F., Empirical Assessment of Generating Adversarial Configurations for Software Product Lines, Empirical Software Engineering, vol. 26, no. 6, 2021. (1.29 MB)
M. Pintor, Roli, F., Brendel, W., and Biggio, B., Fast Minimum-norm Adversarial Attacks through Adaptive Norm Constraints, in NeurIPS, 2021.
L. Demetrio, Biggio, B., Lagorio, G., Roli, F., and Armando, A., Functionality-Preserving Black-Box Optimization of Adversarial Windows Malware, IEEE Transactions on Information Forensics and Security, vol. 16, pp. 3469-3478, 2021.
A. Emanuele Cinà, Vascon, S., Demontis, A., Biggio, B., Roli, F., and Pelillo, M., The Hammer and the Nut: Is Bilevel Optimization Really Needed to Poison Linear Classifiers?, in International Joint Conference on Neural Networks, (IJCNN) 2021, Shenzhen, China, 2021, pp. 1–8.
D. Solans, Biggio, B., and Castillo, C., Poisoning Attacks on Algorithmic Fairness, in Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2020), 2021, p. 162--177. (1.05 MB)
M. Kravchik, Biggio, B., and Shabtai, A., Poisoning Attacks on Cyber Attack Detectors for Industrial Control Systems, in Proceedings of the 36th Annual ACM Symposium on Applied Computing, New York, NY, USA, 2021, pp. 116–125.
2019
F. Crecchi, Bacciu, D., and Biggio, B., Detecting Adversarial Examples through Nonlinear Dimensionality Reduction, in 27th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning - ESANN '19, 2019, pp. 483-488. (552.39 KB)
D. Maiorca and Biggio, B., Digital Investigation of PDF Files: Unveiling Traces of Embedded Malware, IEEE Security and Privacy: Special Issue on Digital Forensics, vol. 17, no. 1, pp. 63-71, 2019. (838.95 KB)
L. Demetrio, Biggio, B., Lagorio, G., Roli, F., and Armando, A., Explaining Vulnerabilities of Deep Learning to Adversarial Malware Binaries, in 3rd Italian Conference on Cyber Security, ITASEC 2019, Pisa, Italy, 2019, vol. 2315. (801.85 KB)
R. Labaca-Castro, Biggio, B., and Rodosek, G. Dreo, Poster: Attacking Malware Classifiers by Crafting Gradient-Attacks That Preserve Functionality, in Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, New York, NY, USA, 2019, pp. 2565–2567.
D. Maiorca, Biggio, B., and Giacinto, G., Towards Adversarial Malware Detection: Lessons Learned from PDF-based Attacks, ACM Computing Surveys, vol. 52, no. 4, 2019. (1.21 MB)
P. Temple, Acher, M., Perrouin, G., Biggio, B., Jezequel, J. - M., and Roli, F., Towards Quality Assurance of Software Product Lines with Adversarial Configurations, in Proceedings of the 23rd International Systems and Software Product Line Conference - Volume A, New York, NY, USA, 2019, pp. 277–288. (2.09 MB)
A. Demontis, Melis, M., Pintor, M., Jagielski, M., Biggio, B., Oprea, A., Nita-Rotaru, C., and Roli, F., Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks, in 28th Usenix Security Symposium, Santa Clara, California, USA, 2019, vol. 28th {USENIX} Security Symposium ({USENIX} Security 19), p. 321--338. (1.09 MB)
A. Demontis, Melis, M., Biggio, B., Maiorca, D., Arp, D., Rieck, K., Corona, I., Giacinto, G., and Roli, F., Yes, Machine Learning Can Be More Secure! A Case Study on Android Malware Detection, IEEE Trans. Dependable and Secure Computing, vol. 16, no. 4, pp. 711-724, 2019. (3.61 MB)
2018
B. Kolosnjaji, Demontis, A., Biggio, B., Maiorca, D., Giacinto, G., Eckert, C., and Roli, F., Adversarial Malware Binaries: Evading Deep Learning for Malware Detection in Executables, in 2018 26th European Signal Processing Conference (EUSIPCO), Rome, 2018, pp. 533-537. (674.62 KB)
M. Melis, Maiorca, D., Biggio, B., Giacinto, G., and Roli, F., Explaining Black-box Android Malware Detection, in 26th European Signal Processing Conference (EUSIPCO '18), Rome, Italy, 2018, pp. 524-528. (431.78 KB)

Pages