Publications

Export 307 results:
Filters: Author is Fabio Roli  [Clear All Filters]
In Press
W. W. Y. Ng, Hu, J., Yeung, D., Yin, S., and Roli, F., Diversified Sensitivity based Undersampling for Imbalance Classification Problems, IEEE Transactions on Cybernetics, In Press. (1.91 MB)
Y. Guan, Li, C. - T., and Roli, F., On Reducing the Effect of Covariate Factors in Gait Recognition: a Classifier Ensemble Method, IEEE Transactions on Pattern Analysis and Machine Intelligence, In Press. (311.43 KB) (151.4 KB)
2022
M. Melis, Scalas, M., Demontis, A., Maiorca, D., Biggio, B., Giacinto, G., and Roli, F., Do Gradient-Based Explanations Tell Anything About Adversarial Robustness to Android Malware?, International Journal of Machine Learning and Cybernetics, vol. 13, pp. 217-232, 2022. (1.2 MB)
2019
A. Carcangiu, Spano, L. Davide, Fumera, G., and Roli, F., DEICTIC: a Compositional and Declarative Gesture Description based on Hidden Markov Model, International Journal of Human-Computer Studies, vol. 122, p. 20, 2019. (1.69 MB)
L. Demetrio, Biggio, B., Lagorio, G., Roli, F., and Armando, A., Explaining Vulnerabilities of Deep Learning to Adversarial Malware Binaries, in 3rd Italian Conference on Cyber Security, ITASEC 2019, Pisa, Italy, 2019, vol. 2315. (801.85 KB)
P. Temple, Acher, M., Perrouin, G., Biggio, B., Jezequel, J. - M., and Roli, F., Towards Quality Assurance of Software Product Lines with Adversarial Configurations, in Proceedings of the 23rd International Systems and Software Product Line Conference - Volume A, New York, NY, USA, 2019, pp. 277–288. (2.09 MB)
A. Demontis, Melis, M., Pintor, M., Jagielski, M., Biggio, B., Oprea, A., Nita-Rotaru, C., and Roli, F., Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks, in 28th Usenix Security Symposium, Santa Clara, California, USA, 2019, vol. 28th {USENIX} Security Symposium ({USENIX} Security 19), p. 321--338. (1.09 MB)
A. Demontis, Melis, M., Biggio, B., Maiorca, D., Arp, D., Rieck, K., Corona, I., Giacinto, G., and Roli, F., Yes, Machine Learning Can Be More Secure! A Case Study on Android Malware Detection, IEEE Trans. Dependable and Secure Computing, vol. 16, no. 4, pp. 711-724, 2019. (3.61 MB)
2018
B. Kolosnjaji, Demontis, A., Biggio, B., Maiorca, D., Giacinto, G., Eckert, C., and Roli, F., Adversarial Malware Binaries: Evading Deep Learning for Malware Detection in Executables, in 2018 26th European Signal Processing Conference (EUSIPCO), Rome, 2018, pp. 533-537. (674.62 KB)
M. Melis, Maiorca, D., Biggio, B., Giacinto, G., and Roli, F., Explaining Black-box Android Malware Detection, in 26th European Signal Processing Conference (EUSIPCO '18), Rome, Italy, 2018, pp. 524-528. (431.78 KB)
B. Lavi, Fumera, G., and Roli, F., Multi-Stage Ranking Approach for Fast Person Re-Identification, IET Computer Vision, vol. 12, no. 4, p. 7, 2018. (1.07 MB)
B. Biggio and Roli, F., Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning, Pattern Recognition, vol. 84, pp. 317-331, 2018. (3.76 MB)
2017
M. Melis, Demontis, A., Biggio, B., Brown, G., Fumera, G., and Roli, F., Is Deep Learning Safe for Robot Vision? Adversarial Examples against the iCub Humanoid, in ICCV 2017 Workshop on Vision in Practice on Autonomous Robots (ViPAR), Venice, Italy, 2017, vol. 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 751-759. (3.16 MB)
P. Piredda, Ariu, D., Biggio, B., Corona, I., Piras, L., Giacinto, G., and Roli, F., Deepsquatting: Learning-based Typosquatting Detection at Deeper Domain Levels, in 16th International Conference of the Italian Association for Artificial Intelligence (AI*IA 2017), 2017, vol. 10640 of LNCS, pp. 347-358. (1.21 MB)
I. Corona, Biggio, B., Contini, M., Piras, L., Corda, R., Mereu, M., Mureddu, G., Ariu, D., and Roli, F., DeltaPhish: Detecting Phishing Webpages in Compromised Websites, 22nd European Symposium on Research in Computer Security (ESORICS), vol. 10492. Springer International Publishing, Norway, September 11-15, 2017, pp. 370–388, 2017. (4.13 MB)
I. Pillai, Fumera, G., and Roli, F., Designing multi-label classifiers that maximize F measures: state of the art, Pattern Recognition, vol. 61, 2017. (452.28 KB)
E. Santucci, Didaci, L., Fumera, G., and Roli, F., A Parameter Randomization Approach for Constructing Classifier Ensembles, Pattern Recognition, vol. 69, pp. 1-13, 2017. (448.73 KB)
S. Rota Bulò, Biggio, B., Pillai, I., Pelillo, M., and Roli, F., Randomized Prediction Games for Adversarial Machine Learning, IEEE Transactions on Neural Networks and Learning Systems, vol. 28, no. 11, pp. 2466-2478, 2017. (1.52 MB) (256.21 KB)

Pages