
RUHR-UNIVERSITÄT BOCHUM
Horst Görtz Institute for IT Security

Technical Report TR-HGI-2016-003

Evaluating Analysis Tools for Android Apps: Status Quo and
Robustness Against Obfuscation

Johannes Hoffmann, Teemu Rytilahti, Davide Maiorca, Marcel Winandy, Giorgio
Giacinto, Thorsten Holz

Chair for Systems Security

Ruhr-Universität Bochum TR-HGI-2016-003
Horst Görtz Institute for IT Security August 2, 2016
D-44780 Bochum, Germany

Evaluating Analysis Tools for Android Apps:
Status Quo and Robustness Against Obfuscation

Johannes Hoffmann
∗

Ruhr-University Bochum
Teemu Rytilahti

∗

Ruhr-University Bochum
Davide Maiorca

†

University of Cagliari

Marcel Winandy
∗

Ruhr-University Bochum
Giorgio Giacinto

‡

University of Cagliari
Thorsten Holz

∗

Ruhr-University Bochum

ABSTRACT
The recent past has shown that Android smartphones be-
came the most popular target for malware authors. Con-
temporary malware families present a variety of features
that allow, among others, to steal arbitrary data and to
cause significant monetary losses. These circumstances led
to the development of many different analysis methods that
are aimed to assess the absence of potential harm or mali-
cious behavior in mobile apps. In return, malware authors
devised more sophisticated methods to write mobile mal-
ware that attempt to thwart such analyses. In this work,
we first survey the systems devised to analyze and verify
mobile apps and describe the assumptions they rely on to
detect malicious content and behavior. We then present a
new obfuscation framework that aims to break such assump-
tions, thus modifying Android apps to avoid them being
analyzed by the targeted systems. We use our framework
to evaluate the robustness of static and dynamic analysis
systems for Android apps against such transformations. In
particular, we provide a comprehensive report of the status
quo of Android analysis tools against well-obfuscated mal-
ware and we demonstrate that most systems could be easily
evaded. With our analysis, we point out research problems
that should be addressed by future analysis tools and we
propose our framework as a possible aid to improve their
robustness.

Keywords
Android, DEX bytecode, Obfuscation, Malware, Program
Analysis, Survey

1. INTRODUCTION
Malicious software for mobile devices became prevalent

in the last few years. While the first of such samples were
rather simple and unsophisticated, the complexity of today’s
malicious apps is steadily increasing. Especially malware
for Android-based smartphones has significantly advanced
in the recent past. This is a repetition of the evolution
∗firstname.lastname@rub.de
†davide.maiorca@diee.unica.it
‡giacinto@diee.unica.it

of malware we observed for desktop computers: While the
very first computer viruses and worms were rather basic,
their level of difficulty constantly rose over the years and
modern malware like Stuxnet, Flame or Regin impressively
demonstrate the sophistication of today’s threats. Hence,
we also expect that malware for mobile devices will become
more mature in the near future.
To counter this development, analysis tools must keep

up with the constant evolution of malware. The typical
arms race in computer security between attackers and de-
fenders is especially distinctive in this area. Researchers
from both academia and industry developed a large num-
ber of analysis methods for Android apps in recent years
(e. g., [11, 13,16,40,58,62]). These tools explored many dif-
ferent approaches and they took into account lessons learned
from analyzing malware for desktop computers. However,
existing analysis methods cannot simply be ported to An-
droid due to many intricacies of the platform (e. g., multiple
entry points and a different binary format). Thus, many
novel analysis approaches were examined and this led to a
huge body of work on this topic.
In this report, we systematically evaluate the robustness

of analysis tools for Android apps. Such an empirical evalu-
ation is needed to assess how reliable existing analysis tools
are. Moreover, we want to anticipate the next generation
of mobile malware that leverages sophisticated obfuscation
methods to impede automated analyses. In a first step, we
survey existing analysis methods and categorize these ap-
proaches according to their main analysis goal. This pro-
vides us with a comprehensive overview and leads us to
identify three different categories of tools: General-purpose
analysis tools, ICC-vulnerability scanners, and behavioral
analyzers. We found out that such tools base their analysis
on specific basic assumptions. For example, to perform an
analysis a tool could rely on (1) having access to the call
graph (CG) of the app, (2) being able to follow data flows,
or (3) being able to find API function names in the code.
To produce an obfuscated app, a viable strategy is thus to
systematically thwart these assumptions. For example, we
can degenerate the CG such that it does not contain mean-
ingful information, hide all API strings, or conceal object
types. The resulting app has the same semantics as the un-
obfuscated one, but it withstands the analysis tools as their
basic assumptions are not fulfilled anymore.
To concretely generate obfuscated apps, we developed a

2

framework that specifically targets such assumptions by im-
plementing fine-grained obfuscation strategies, including the
following ones: Detection of the analysis environment, en-
try point pollution, taint analysis bypassing, use-def chains
breaking, and type hiding. Contrarily to other free and
commercial obfuscators, our framework was not designed
to ensure code protection against application tampering or
repackaging, nor does it aim to heavily obfuscate commer-
cial applications to make their bytecode less readable. Its
main goal is supporting researchers by providing a set of
obfuscations techniques with which it is possible to test the
robustness of static and dynamic analysis tools.
In addition, our framework allows for developing custom

obfuscations with which the user can add and delete instruc-
tions, methods and classes. It also gives the possibility to
control and obfuscate the application entry-points by writ-
ing the necessary changes to the Manifest. Our tool directly
operates on DEX bytecode, as this implies that we do not
need access to the app’s source code to perform our changes.
In summary, we make the following four contributions in

this report: (1) We survey existing analysis methods and
provide a comprehensive overview of tools. (2) We analyze
the basic assumptions underlying existing analysis methods
(e. g., ability to reconstruct a CG) and systematically ex-
plore how these assumptions can be thwarted (e. g., flatten-
ing the CG). Our goal is to produce an obfuscated app with
the same semantics as the original one, but which with-
stands existing analysis tools. (3) We develop a compre-
hensive framework that employs obfuscation techniques that
aim to thwart the assumptions on which the aforementioned
tools base their analysis. Our framework is available upon
request. (4) We empirically evaluate obfuscated applications
by using our framework and find that they severely hamper
tools, thus successfully evading both static and dynamic sys-
tems. We additionally evaluate how decompilation can be
thwarted with obfuscated code. With our analysis, we re-
port on the status quo of current analysis tools for Android
apps and propose research guidelines that address the issues
we have found during our tests.

2. BACKGROUND & RELATED WORK
We first survey Android analysis frameworks. Then we

discuss related work on obfuscation for Android apps and
explain why we implemented our own tool. An overview of
all mentioned frameworks can be found in Table 1.

2.1 Android Application Analyzers
Prior surveys have given an overview on security research

on Android [14] and evaluated the effectiveness of malware
detection with dynamic analyses [30]. In contrast, we con-
sider both static and dynamic analysis frameworks and also
include general analysis tools. As such, existing approaches
of Android application analysis can be categorized into three
classes according to their main purpose. In the following, we
review the approaches.

2.1.1 Basic and General Analysis Tools
The first class consists of general analysis tools that try

to determine specific properties of individual apps. These
tools are often used as building blocks for other tools. For
example, Dedexer [34] and baksmali [4] to disassemble DEX
files, ded [32] and dex2jar [2] to convert Dalvik bytecode
to Java bytecode, and Soot [50] to transform and run code

analyses. On the other hand, WALA [53] is often used by
older tools to analyze transformed Java bytecode instead of
directly working on DEX.
AndroGuard [13] is a static analysis framework that in-

cludes a decompiler and premade tools for various tasks such
as analyzing components and permissions, and determin-
ing native code usage. It can also create CFGs and show
differences between apps. SAAF [22] is a static analysis
framework for Android that works on smali code, providing
program slicing among other common analyses for manual
analysis such as generating call-graph and displaying general
information about the package.
TaintDroid [15] implements dynamic taint tracking to dis-

cover information leakage in apps. This analysis is per-
formed in two basic phases: (1) One or more sources of
sensitive data are specified and the corresponding data is
marked as tainted; (2) the app is executed and monitored
in a modified Dalvik VM that tracks the tainted data flow
through the bytecode. When any tainted data reaches a
specified sink, e. g., Internet connection, an alarm is raised.
DroidScope [58] is a dynamic binary instrumentation tool

that uses a virtualization-based analysis. In contrast to
TaintDroid, DroidScope targets both architectural levels of
Android: the native Linux and the Dalvik contexts. Besides
a modified DVM, it also uses a modified QEMU, which is
also instrumented to log specific operations. DroidSope al-
lows extensions through customized analysis plugins, and
the authors implemented four different analysis tools: a na-
tive instruction tracer, a Dalvik instruction tracer, an API
tracer (which logs method invocations of the Android API),
and a taint tracker.
More recent research is concentrating on static code and

taint analysis, as dynamic analyses may not execute all code
paths. FlowDroid [18] is a static taint analysis system that
provides a precise model of the application lifecycle, and it is
context-, flow-, field- and object-sensitive. FlowDroid builds
a so-called exploded supergraph based on flow functions that
define the data flow on program statements. The decision
whether a variable is tainted at a certain point in the code
is reduced to a graph reachability problem. EdgeMiner [9]
aims to provide a comprehensive set of implicit control flows
by analyzing the Android framework, which in turn can be
used, e. g., by FlowDroid and other tools depending on con-
trol flow analysis for more complete coverage. StaDynA [61]
is a tool that performs static analysis in order to detect the
usage of dynamic class loaders and reflections, and to build
a method call graph. This graph is then extended by ob-
serving the execution of those methods in a modified VM,
revealing the real call targets for reflective calls. This allows
building callgraphs even when reflections or external class
loaders are used to hide functionalities.
Another recent approach is HARVESTER [38], whose ba-

sic concept is similar to StaDynA. The main idea is gather-
ing program slices from a targeted application and creating
from those a new APK file for dynamic evaluation. In a first
phase, it forms multiple execution paths for interesting slices
that are executed on an emulator or on a real device. At
the same time, it collects the runtime values of parameters
not otherwise available for static analysis, such as encrypted
strings and reflective calls. After this analysis phase, it can
instrument the original executable to include static values
for further processing, making also static analysis feasible
even against heavily obfuscated samples.

3

Table 1: Analysis tools for the Android platform.
Code Analysis Requirements

Tool Static Dynamic Callgraph Strings Based on Public
G
en

er
al

Soot [50] X — X
AndroGuard [13] X X X — X
SAAF [22] X X X — X
TaintDroid [15] X modified DVM X
DroidScope [58] X modified QEMU, modified DVM X
FlowDroid [18] X X dexpler, Soot, Heros X
EdgeMiner [9] X — X
StaDynA [61] X X X X modified DVM, AndroGuard
HARVESTER [38] X X Soot

IC
C

vu
ln
er
ab

ili
tie

s

SCanDroid [19] X X X decompiler, WALA
ComDroid [11] X X X Dedexer X
CHEX [28] X X DexLib, WALA, Stowaway
Woodpecker [21] X X baksmali
DroidChecker [10] X X X Java Decompiler (JD), ANTLR
Epicc [33] X X X Dare, Soot (Spark, Heros) X
IccTA [27] X X X Epicc, FlowDroid, ApkCombiner X
Amandroid [54] X X X modified dexdump X
DIDFAIL [26] X X X Epicc, FlowDroid X
DroidSafe [20] X X X Soot X
AppAudit [57] X X X X dex2jar

B
eh

av
io
ur

ProfileDroid [55] X X X apktool, adb, strace, tcpdump
CopperDroid [40,48] X QEMU, GDB X
AppProfiler [41] X X ded, Fortify SCA, Stowaway X
AppIntent [60] X X X ded, Soot, JavaPathfinder
DroidMiner [59] X X X AndroGuard
AsDroid [24] X X X dex2jar, WALA

Sa
nd

bo
x

Andrubis [1] X X X TaintDroid X
ForeSafe [17] X X — X
NVISO [31] X X — X
TraceDroid [51] X X — X
Mobile-Sandbox [47] X X X TaintDroid/DroidBox, ltrace X

2.1.2 Tools Analyzing ICC Vulnerabilities
Inter-Component Communication (ICC) is another cru-

cial aspect of app security on Android. Apps could be
abused via ICC by malicious apps to gain access to sen-
sitive data or to attack their control flow. Messages going
to be sent from one app to another could be delivered to an
unintended receiver (e. g., via implicit Intents).
SCanDroid [19] is an early static analyzer that checks for

data flow security in and between Android apps. This tool
concentrates on flows from and to data stores such as content
providers, databases, files, and URIs. Furthermore, the tool
reasons whether the data flows conform to the permissions
the application has and to the given permissions of other
applications that are supposed to run on the same device.
ComDroid [11] was the first static analysis tool to examine

potential security violations resulting from implicit Intents
or publicly made components in Android apps. ComDroid
looks for seven different potential ICC vulnerabilities ac-
cording to the Android component types that are involved
with Intent-based ICC. It analyzes disassembled bytecode
and identifies the creation of explicit and implicit Intent
objects. Furthermore, it follows the control flow to deter-
mine Intents that are used in unprotected ICC calls. Besides
identifying exported components from the app’s manifest,

ComDroid also looks in the code for dynamically registered
broadcast receivers that listen to implicit Intents or Sys-
tem action strings. CHEX [28] focuses on detecting com-
ponent hijacking vulnerabilities by analyzing disassembled
bytecode. Woodpecker [21] aims at detecting ICC vulnera-
bilities in the bytecode of the pre-installed apps on an An-
droid system. DroidChecker [10] focuses on finding ICC
vulnerabilities that could be exploited by a confused deputy
attack by performing an inter-procedural flow and a taint
analysis on the decompiled source code to find exploitable
data paths.
Epicc [33] is a static analyzer that creates a mapping of

ICC app components. It identifies and matches correspond-
ing entry and exit points of ICC according to possible Intent
values. The tool is able to analyze the possible Intent values
in conditional branches, so it can effectively map call sites to
ICC entry points, even across applications. IccTA [27] and
DIDFAIL [26] both combine and improve the analysis tools
Epicc and FlowDroid to find privacy leaks across multiple
apps that are linked via ICC. Amandroid [54] is a generic
framework for points-to analysis, and it shares goals with
DIDFAIL and IccTA, but provides also other tools besides
taint tracking.
DroidSafe [20] improves the analysis of the static source-

4

to-sink flow by modelling the runtime semantics of critical el-
ements such as strings that are passed as API arguments, na-
tive methods, and so forth. Its authors report an increased
accuracy compared to FlowDroid and IccTA combination.
AppAudit [57] detects information leaks by employing dy-

namic and static analysis. The static part consists of a de-
tailed call graph analysis that looks for suspicious functions
by focusing, among others, on reflective API, static fields,
and android life cycle methods. The dynamic part executes
the suspicious functions bytecode to confirm and extended
possible privacy leaks found by the previous analysis. Such
execution includes the possibility of approximating unknown
bytecode operands to avoid possible problems produced by
their presence.
It is reasonable to assume that ICC vulnerabilities will

cause a multitude of security violations, as interactions a-
mong apps increase. Interestingly, most existing ICC ana-
lyzers are based on static analysis, and require the ability of
performing string matching to find critical API functions on
source code or disassembled bytecode. We can expect that
most or all of these tools will fail if apps are obfuscated.

2.1.3 Tools Analyzing Application Behavior
Another group of tools aims at systematically monitoring

the behavior of apps. Based on such reports, users can make
more informed decisions whether they want to install the
app or not.
ProfileDroid [55] generates behavior profiles based on a

combination of static and dynamic analyses. It performs a
static analysis of the bytecode to search for used Intents, and
it dynamically looks at user-generated input events, OS-level
system calls, and network traffic usage.
CopperDroid [40,48] performs a dynamic behavioral anal-

ysis by logging low-level system calls (sysctl) to the Linux
kernel and high-level API calls to the Android middleware
to infer actions taken by the application without modify-
ing the host system. Based on these call profiles, apps can
be compared to those that execute malicious actions. App-
Profiler [41] follows a similar approach, though resorting to
static analysis. It uses a pre-computed mapping of API calls
to privacy-relevant behavior, and statically analyzes the de-
compiled code of apps whether it matches such a profile.
AppIntent [60] analyzes whether external data transmis-

sions in apps can be associated to user intentions. The tool
combines static and dynamic methods. First, a static code
analysis identifies execution paths leading to external data
transmission, and a symbolic execution searches for possi-
ble events leading to user actions. Then, a dynamic exe-
cution instruments the app to run automatically generated
test cases that will show if data transmissions match with
user events.
DroidMiner [59] resorts to static analysis to extract An-

droid APIs, and builds a behavioral graph from them. From
such graph, it extracts possible malicious behavioral pat-
terns called modalities, and uses them to train statistical
classifiers that are used to establish apps’ maliciousness.
AsDroid [24] aims to reason about maliciousness based on

detecting hidden actions such as network or cellular traf-
fic. It facilitates this by analyzing the descriptions of user-
interface elements and trying to connect them to the func-
tionality.
Most of the approaches in this category rely to some ex-

tent on static analyses of the code. Hence, we can expect

that behavior profiles will not be detectable with these tools
when the code of the apps is obfuscated. The only excep-
tions are CopperDroid, ProfileDroid and AppIntent, which
use dynamic analysis to do their analysis. However, the
profile of the high-level API calls should be different, e. g.,
when normal API calls are replaced by reflection calls.

2.2 Android Obfuscators
As we mentioned in the introduction of this paper, the

aim of our framework is different to the one of current com-
mercial and free obfuscators. We focus on fine-grained ob-
fuscations that directly target the basic assumptions static
and dynamic tools rely on, in order to provide an effective
tool to easily test the robustness of analysis tools. Still, for
completeness, we provide in this section an overview of the
available obfuscators.
DexGuard is probably one of the most powerful commer-

cially available obfuscator so far released for Android. It
can rename identifiers and also features advanced transfor-
mations, such as utilizing reflections for indirect invokes, or
adopting string and class encryption.
Android applications are also often obfuscated with Pro-

guard, the open source predecessor of DexGuard. It works
on Java code, too, but offers less features and its main pur-
pose is to optimize applications by means of, e. g., string
replacements and the removal of unused app code.
Huang et al. [23] proposed to apply the algorithms of the

Java bytecode obfuscator SandMark [49] on Android exe-
cutables. This was done by transforming DEX to Java byte-
code with the Soot framework. They tested the transformed
applications against repackaging detectors. Unfortunately,
as the authors report, this approach has lots of limitations
as the conversion from DEX to Java bytecode.
Rastogi et al. [39] presented DroidChameleon, a frame-

work with which they evaluated what changes to a DEX file
produce different results in the detection rates for antivirus
programs. They call methods indirectly and encrypt strings
next to the encryption of assets. The scope of their work
is different to ours, as they implemented simple obfuscation
strategies to evade anti-malware systems. Our implemented
obfuscations are not only more complex and fine-grained,
we also evaluate against more analysis systems.
Protsenko et al. presented Pandora [36] and evaluated how

well antivirus solutions can detect obfuscated Android mal-
ware. Their tool applies a multitude of obfuscations such
as string encryption, method in-/outlining, and the creation
of getters and setters for field access. Their transformations
are accomplished with the Soot framework, and their main
goal is to analyze antivirus robustness against transforma-
tion attacks.
Another well-known form of hindering analyses is pack-

ing: The original payload is somehow encrypted and only
loaded and decrypted when it is being executed [45]. Cur-
rently, there are already multiple services (e. g., Bangcle App
Shield) offering packing for Android applications. DexPro-
tector is another commercial tool to pack DEX files, al-
though they also support string encryption. While making
static analysis hard, there are ways to dump the original
code after decryption from memory (e. g., as described by
Shao et al. [44]), thus allowing to perform the analysis on
the decrypted part. Therefore, such methods should also be
combined with other obfuscation strategies for better eva-
sion.

5

3. PROGRAM ANALYSIS ASSUMPTIONS
We now explain how applications can be altered to thwart

analysis attempts. Basing on the survey of existing analysis
approaches, we review the basic assumptions these analysis
tools rely on to perform their analysis, and discuss obfusca-
tion strategies that will disturb such assumptions.
Our obfuscated apps must fulfill the following three re-

quirements: (1) they must run on Android devices without
any required modifications to the OS; (2) they must not
be bound to any OS version unless the original app is; (3)
they must be obfuscated by directly operating on the DEX
bytecode, without transforming them to other forms such as
Java bytecode or Java source code.

3.1 Dynamic Analysis Evasion
First, we describe the techniques our framework imple-

ments to hinder dynamic analysis systems from producing
meaningful results by hampering their analysis attempts as
well as hiding data from them.
Analysis Detection: Analysis systems usually resort to

a modified instance of the emulator that is shipped with the
Android SDK. Malware usually attempts to detect the anal-
ysis environment and divert the application’s control flow
away from its malicious parts. Vidas et al. [52] listed a vari-
ety of mechanisms to successfully detect such environments.
Petsas et al. [35] evaluated and tested advanced detection
mechanisms that leverage implementation details of QEMU.
All these revealing information sources should be changed
in custom analysis environments to avoid detection. Still,
we found that stock or only slightly modified emulators are
often used in analysis systems, and thus such techniques can
be easily applied by malware in practice.
Time: As analyses are usually run for a limited time,

another common technique to evade dynamic analysis ap-
proaches is to perform malicious activities at a certain point
in time. Android allows such artificial delays by using for
example Thread.sleep() or the AlarmManager, which we
implemented. Analysis frameworks have adapted to this
technique and fake the amount of elapsed time, thus circum-
venting such methods. A more challenging task for analysis
systems is detecting expensive computations whose result is
used as a requirement for malicious actions. Further, mal-
ware could track the computation time for well-known tasks
by resorting to external sources such as NTP servers.
Entry Point Pollution: Programs have typically well-

defined entry points, e. g., some kind of main() method. Be-
cause of their event-driven nature, though, Android applica-
tions can have a multitude of entry points whose execution
is regulated by the Android Framework. Depending on the
specifics of these entry points, it is often not clear when and
how they are launched, if at all. Thus, a dynamic analysis
should invoke all these entry points to generate a good code
coverage rate. To complicate analysis attempts, we enable
injection of new entry points that are not used by the app,
which could either let the application crash, exit, enter an
infinite loop, or hamper the analysis in other ways, e. g., set-
ting a flag that gets checked before malicious activities take
place.
Anti-tainting: Taint analysis is a powerful analysis tech-

nique where data that flows between sources and sinks is
tainted with so called tags [43]. In a simple example, a
framework method which returns the IMEI can be declared
as a source and the send() method of a socket as a sink.

Whenever information is requested from the source, it is
marked with a chosen tag and whenever tagged data is sent
to a sink, a report is generated. This allows the detection
of information leaks through general data modelling. Taint-
Droid [15] was the first tool to offer taint analysis on An-
droid. For our anti-tainting implementation we make use of
a list of sensitive sources from previous work by Rasthofer et
al. [37]. If data from such sources is represented as a nu-
meric value (e. g., a serial number) or a string (e. g., contact
information), our injected code automatically “untaints” the
data by creating it anew like described by Sarwar et al. [42]
before it is further processed.

3.2 Static Analysis Evasion
Next, we describe how static analyzers can be evaded.

Again, we describe several obfuscation strategies we utilize
in order to prevent static analyses. Whereas we only discuss
a small excerpt of possible transformations, these techniques
are sufficient to hinder the analysis as we later see in Sec-
tion 4. A comprehensive taxonomy is provided by Collberg
et al. [12].
Call Graph Degeneration: As Java supports reflec-

tions, most direct method invocations can be replaced by
indirect ones. A simple example is given in Listing 1. We
replace each invoke-x and invoke-x/range instruction by
an indirect call, so that the call graph would be totally de-
generated. Only invocations that cannot be replaced this
way (e. g., calls to superclass methods due to polymorphism
and required invocations that initialize an instance) would
be left. Most methods therefore never seem to be called. We
have to point out that the code in our example is not well-
obfuscated for readability purposes. This will change when
we apply additionally techniques described in the following
sections.
Breaking Use-Def Chains: In order to track the data

flow throughout a program, use-definition (use-def) chains
can be used. In DEX code, such chains can easily be built
because access to fields and arrays is easily visible by ex-
amining the corresponding instructions (e. g., *put, *get).
Therefore, in order to break those chains, we have to make
those accesses indirect. Doing so is exemplified in Listing 2.
To hide field and array accesses, we replace fields and array
calls with their respective reflection methods (lines 8–11 for
fields, 14–15 for arrays).
Hiding Types: The previous techniques do not com-

pletely hide types, so that they could be easily inferred by an
analyst, see Listing 1. Many Reflection APIs accept param-
eters as Objects, letting the virtual machine do the type-
checking at runtime. This enables us to get rid of most
visible types, except for primitive types and some corner-
cases. For example, arithmetic instructions (e. g., add-int)
and branch-instructions (e. g., if-eq) work on non-object
registers, which require unboxed, primitive types.
We additionally create new class instances indirectly. All

calls to <init>() methods are replaced with calls to its coun-
terpart j.l.r.Constructor.newInstance(). This still re-
quires a class object, as shown in lines 10 and 13-14 in List-
ing 1, which is done with the type-revealing const-class
opcode. These and const-string calls are left in the ex-
ample for readability. Class objects can also be acquired in-
directly by using j.l.Class.forName(String), allowing us
to remove const-class calls. We additionally remove an-

6

Listing 1: Indirect invokes. Code in line 4 is replaced
with semantically equivalent code from lines 6–28.

1 sget - object v0 , Lj/l/ System ;. out:Lj/i/ PrintStream ;
2 const - string v1 , "some string "
3
4 invoke - virtual {v0 , v1}, Lj/i/ PrintStream ;. println :(

Lj/l/ String ;)V
5
6 const - string v4 , "java.io. PrintStream "
7 invoke - static / range {v4}, Lj/l/ Class ;. forName :(Lj/l/

String ;) Lj/l/ Class ;
8 move -result - object v4
9 const /16 v8 , #int 1

10 const - class v7 , Lj/l/ Class ;
11 invoke - static / range {v7 , v8}, Lj/l/ reflect / Array ;.

newInstance :(Lj/l/ Class ;I)Lj/l/ Object ;
12 move -result - object v6
13 check -cast v6 , [Lj/l/ Class ;
14 const - class v8 , Lj/l/ String ;
15 const /16 v7 , #int 0
16 aput - object v8 , v6 , v7
17 const - string v5 , " println "
18 invoke - virtual / range {v4 , v5 , v6}, Lj/l/ Class ;.

getDeclaredMethod :(Lj/l/ String ;[Lj/l/ Class ;) Lj/l/
reflect / Method ;

19 move -result - object v9
20 const /16 v12 , #int 1
21 const - class v11 , Lj/l/ Object ;
22 invoke - static / range {v11 , v12}, Lj/l/ reflect / Array ;.

newInstance :(Lj/l/ Class ;I)Lj/l/ Object ;
23 move -result - object v11
24 check -cast v11 , [Lj/l/ Object ;
25 const /16 v4 , #int 0
26 aput - object v1 , v11 , v4
27 move - object /16 v10 , v0
28 invoke - virtual / range {v9 , v10 , v11}, Lj/l/ reflect /

Method ;. invoke :(Lj/l/ Object ;[Lj/l/ Object ;) Lj/l/
Object ;

notations that are not required by the virtual machine but
that “leak” type information, such as method signatures and
debug information.
Applying all these techniques on a method reduces the

visible types to only basic Java ones, particularly from the
Reflection package. In summary, we access fields and arrays
and invoke methods including constructors indirectly over
reflection. We also pass parameters as Objects whenever
possible, making the type-checking a runtime-only opera-
tion. Class objects are also accessed indirectly and we only
cast primitive types (and arrays) back to their correspond-
ing types. If required, we also apply Java’s auto(un)boxing
feature (e. g., converting a primitive int to an Integer). List-
ing 2 gives an example of how a value is retrieved from a
field and stored in a local array without revealing its type.
Bypassing Signature Matching: Some tools identify

maliciousness by relying on the occurrence of certain char-
acteristics in an app. We list the most prominent ones and
also discuss how we fool such detection mechanisms.
Occurrences: Counting elements such as file sizes, num-

ber of classes, fields, methods, or instructions can be used
to detect similar programs. However, we can easily avoid
this by changing, adding, or removing (unused) parts of a
program.
Strings and Literals: In order to save disk space and

memory, all unique strings used by an app are stored in
an array called string section and referenced by an index.
This means that all identifiers, types, and strings defined
with const-string instructions are located in this array.
Strings and static numerical values used within a program

Listing 2: Indirect static field and local array access
without revealing the object type. Code in lines 4–6
is replaced with semantically equivalent code from
lines 8–15.

1 const /4 v2 , #int 1
2 new - array v1 , v2 , [Lj/l/ String ;
3
4 sget - object v0 , Lexmpl /Main ;. aField :Lj/l/ String ;
5 const /4 v2 , #int 0
6 aput - object v0 , v1 , v2
7
8 const - class v9 , Lexmpl /Main;
9 const - string v10 , " aField "

10 invoke - virtual / range {v9 , v10}, Lj/l/ Class ;.
getDeclaredField :(Lj/l/ String ;) Lj/l/ reflect / Field
;

11 move -result - object v8
12 invoke - virtual / range {v8 , v9}, Lj/l/ reflect / Field ;.

get :(Lj/l/ Object ;) Lj/l/ Object ;
13 move -result - object v0
14 const /4 v2 , #int 0
15 invoke - static {v1 , v2 , v0}, Lj/l/ reflect / Array ;. set :(

Lj/l/ Object ;ILj/l/ Object ;)V

do not only give an analyst an overview of the programs
intents, but can also be used to detect repackaged appli-
cations. Thus, hiding that information is a very effective
technique to thwart any analysis attempts that rely on such
information. Our tool replaces all instructions that define
or reference such information with a method invocation re-
turning the value from an encrypted data structure stored
randomly in the app.
Entry Points: Android explicitly declares all possible en-

try points in the Manifest file of the package. Many tools
check the entry points in attempt to detect maliciousness
or duplication of known software. Therefore, while renam-
ing classes we also pay attention to rename the entry points
when needed. Adding new entry points may also affect the
detection. As a common practice to export functionalities to
other applications is by using intent filters instead of hard-
coded names, we can safely rename all not-exported entry
points. Although entrypoints can also be registered during
the runtime and thus removed from the manifest file, we did
not evaluate that.

4. EVALUATING THE ROBUSTNESS OF
ANALYSIS TOOLS

We implemented a framework that is capable of obfuscat-
ing arbitrary Android apps with the techniques introduced
in the previous section. Our system directly obfuscates DEX
code without converting it into an intermediate format (such
as JAR). In this section, we test obfuscations produced with
our framework on static and dynamic analysis systems.
We have produced self-written samples that exhibit char-

acteristics that should be detected and analyzed by the tar-
get systems. Then, we obfuscated such samples by following
these guidelines: Most strings, literals and types are hid-
den; classes, methods, fields and arrays are only accessed
indirectly; unnecessary information is stripped from the ap-
plication (e. g., debug section, specific annotations, unused
strings); all types except primitive ones are presented by
the most generic one, namely j.l.Object, when possible;
the manifest file is changed accordingly to the bytecode ob-
fuscations.

7

The applications are compiled for API level 10 (Android
2.3) and should therefore be supported by all analysis sys-
tems. To ascertain that our obfuscated samples were func-
tional, we tested them on a Nexus 5 smartphone running
Android 4.4.2 (KitKat) before providing them to the tar-
geted analysis systems. As of September 2015 (during which
the framework was being developed) KitKat was the most
used version with about 40% of all devices according to
Google [7]. Although Android 5 has now taken the lead,
KitKat usage still remains at 32.5%.

4.1 Implementation
Our framework is written in Java and heavily extends

dexlib, which is part of the smali tool [4]. Our tool accepts a
DEX or a complete package (APK) file as input. The obfus-
cation occurs in three steps: (1) if an APK is given as input,
we use apktool [56] to extract the package; (2) we directly
rewrite DEX bytecode without converting it to intermediate
formats. This allows for a more fine-grained control of the
VM instructions and registers, and avoids possible crashes
or information loss due to the DEX conversions to inter-
mediate formats; (3) the system will create a fully working,
obfuscated DEX or APK. Our system is able to fully control
all Dalvik instructions, and it is capable of adding, removing
or replacing executable elements such as classes, methods,
fields, and strings. Refer to the Table 5 in Appendix A for
an overview of all our implemented obfuscations. Depending
on the application’s features, not all techniques are applica-
ble due to some code constraints. We added functionality to
dexlib to automatically rewrite parts of a program in order
to properly obfuscate it whilst retaining program semantics.
Rewriting DEX code is not an easy task, as instructions
and registers must carefully be altered as type checking and
access flags are enforced everywhere, and some opcodes in-
troduce limitations on how registers can be used.
With Android 4.4 Google introduced a new runtime envi-

ronment called Android RunTime (ART) as a successor to
Dalvik, which is now default since Android 5. Therefore,
a strongly desired feature is compatibility with both. Even
though we are working on bytecode level and the instruction
set has not changed, ART still contains a completely new
verification code.
Although our goal was to create proof-of-concept samples

that could evade analysis tools, we also tested our frame-
work on apps to verify whether they were still working after
the obfuscation process. We obfuscated 40 among the most
popular apps in Google Play, and manually tested them by
interacting with their main functionalities. Of those, 35 apps
correctly installed and run. The remaining 5 failed due to
some bugs (see Section 7).

4.2 Evaluation of Static Analysis Systems
We begin our evaluation with publicly available static an-

alyzers. All these systems are from academia and are free to
download. As our framework flattens the call graph almost
completely, we expect that static tools cannot properly ana-
lyze the program’s control and data flows. They additionally
see almost no types, literals, nor strings. All tools relying
on such information will likely not be able to produce usable
and meaningful results.
Most public static analyzers focus on Inter-Component

Communication vulnerabilities. All these tools search for
corresponding sinks and sources, i. e., Intents, Receivers and

Content Providers. Epicc [33] and ComDroid [11] are unable
to properly analyze data being passed around after obfusca-
tions are applied. The same is true for FlowDroid [18]: It is
unable to determine sources and sinks because all types are
hidden, and aborts the analysis. The same happens with
DIDFAIL [26], Amandroid [54], and presumably with other
static flow analyzers. We did not test DroidSafe due to its
really high system requirements (recommended to have at
least 64 GB of memory). Because of the implicit control flow
instructions that are used in our obfuscations, we stop infor-
mation leaks that might be detected by the precise control
flow handling of EdgeMiner [9]. All tested tools generate no
results on our obfuscated test samples. The only informa-
tion available to these tools is the information defined in the
manifest file.
All the other public static analyzers failed at gathering

information from our obfuscated test apps. For example,
SAAF [22] is not able to retrieve meaningful information
from generated program slices. Analysis results also miss
relevant information and cannot be used to understand the
program’s semantics. Our implemented obfuscations also
break tools that rely on Java decompilation, such as Droid-
Checker [10]. We provide more details about this topic in
Section 5. StaDynA [61] is able to construct call-graphs for
obfuscated applications as expected, but due to a bug in An-
droGuard [13] it fails to do it for some samples. In general,
their approach might be used to form proper call-graphs for
further analysis, but we cannot provide detailed results.
Our results show that automatically applied obfuscation

to programs completely defeats static analyzers. Most in-
formation accessible by them is only of generic value, and
does not lead to informative analysis reports. The heavy use
of reflections can be flagged suspicious by such tools, but it
cannot be used solely for tagging apps as malicious due to
its wide-spread use. Most of the benign applications resort
to reflective obfuscations to avoid being easily analyzed.

4.3 Evaluation of Dynamic Analysis Systems
In these experiments, we test the capabilities of dynamic

systems to detect evasive behaviors under obfuscation. Be-
cause of their basic properties, such behaviors should easily
be detectable.
To test such systems, we wrote four applications that ex-

hibit malicious and evasive behavior which can be easily
developed to thwart dynamic analysis. Then, we obfuscated
them and made them analyze by five well-known dynamic
analysis services by the time of writing. If a tested dynamic
system failed at detecting such attacks, it would most likely
fail with more complex evasion strategies too. All our ap-
plications display a “Hello World” activity while invoking
additional functions, which we describe now:
• Direct: this app creates three threads and each of them
performs suspicious actions: The first one sends an
SMS; the second one sends the Browser’s search terms
over a TCP socket to one of our servers; the third one
acts like the second one, but steals the IMEI.
• Sleep: This app calls Thread.sleep() for 5 mins before
sending an SMS.
• Alarm: This works similarly to Sleep, but uses Alarm-
Manager for delaying the sending.
• EmuDetect (ED): this app attempts to detect whether
it is running in an emulator before sending an SMS
and the IMEI.

8

Table 2: Results for dynamic analysis services
against analysis evasion techniques.
Vendor Direct Sleep Alarm ED Taints
Andrubis X � X � �
ForeSafe � � � � n. a.
Mobile Sandbox X X X � �
NVISO X � � � �
Tracedroid X � X � n. a.

The aforementioned actions are often used by malware and
should therefore be reported by analysis systems. Our emu-
lator detection also is rather simple and it is well-detectable.
We check against well-known IDs that default to known val-
ues in the emulator: Build.Hardware, Build.Model, Build.
Product, the network operator’s name, IMEI, and the An-
droid ID. Additionally, all applications make use of anti-
tainting techniques.
All tests are implemented in a straightforward fashion by

using standard APIs and should thus be easily detectable.
For example, this means that a system should be able to
detect if the SmsManager was accessed and an SMS was
directly sent with values directly declared in that method.
We also include the Google Play Services library to our

EmuDetect test to check whether the Play services are cor-
rectly set up on the device and whether a connection to
them can be established. If that succeeds, we retrieve the
Android Ad ID. The last check is not complex, but requires
a fully set up Google Play environment. Even real hardware
devices fail this test if the service is not properly updated
and set up with a valid Google account.
We show a summary of the results of our tests in Ta-

ble 2. Satisfying analysis results—meaning the analysis sys-
tem was resistant to our modifications—are marked with a
“X”. If the system fails at retrieving information, we mark
it as “n. a.”. If provided results for that application do not
contain hints for suspicious behavior (such as simply mark-
ing it as “unsuspicious”), we mark them in the table with a
“�”. All mentioned frameworks are also listed in Table 1 in
Appendix A.
The analyzed services base their taint tracking on Taint-

Droid [15], which should detect possible leaks and report
them. If leaked information is being sent back to us and the
service report does not provide information about it, but
does so when the application is not obfuscated, we know
that our implemented obfuscation techniques are success-
fully evading taint analyses. Lost taints are marked with a
“�” in the “Taints” section of the table. If tainted data is not
specifically marked in reports, but is for example contained
in network dumps, we mark it as “n. a.”, as no tags have
been added in the first place. The results obtained by the
tested analysis systems presented in Table 2 demonstrate
many shortcomings of existing analysis methods. We now
provide more details about them.
Andrubis [1] displays results on the service webpage, by

providing all the network activity. The service assigns a ma-
licious value ranging from 0 (likely benign) to 10 (likely ma-
licious) to tested applications. For our samples, such scores
were always towards malicious. Andrubis successfully ana-
lyzed the Direct and Alarm samples, but failed for the Sleep
and EmuDetect samples. Taint tags are not retained, even
though the report contains a section labeled “Data leaks”.

We found that apart from the IMEI, no other identifiers
were changed and no valid Google Account is set up.
Mobile-Sandbox [47] combines static and dynamic analysis

to identify malicious functionality in apps. A static analysis
checks for malware, determines required permissions, and
identifies possible entrypoints. Dynamic results provided by
it look promising. It is the only analyzer that is able to
correctly analyze both delaying samples, but also fails the
emulator detection (only because no valid Google account
is available). It additionally also fails the anti-taint test.
As Mobile Sandbox is based on DroidBox [3], we did not
evaluate it separately.
NVISO [31] was also able to analyze all four samples and

provided nice results (including a screenshot) for the Direct
sample, by ranking it as “confirmed malicious”. All the in-
formation is available, although some can only be found in
the provided PCAP file. The report does not directly show
that browser searches or the IMEI have been leaked. This
is caused by our implemented obfuscations, as other reports
contain such information. The connection to our server is
also listed. All the other applications are ranked with “no
malicious activity detected” and the sending of the SMS
goes undetected. The used emulator only reports a changed
IMEI.
ForeSafe [17] analyzed our samples and provided us with

a screenshot of our running application, meaning that the
app could be successfully started. The report of the dynamic
analysis rates our app with a “No Risk Detected”. There was
no mention about any of our performed activities. We even
got three connections to our server, so the app seems to be
started multiple times. Additionally, the IMEI and other
identifiers were unchanged. A quick static check performed
before the dynamic part also states that no suspicious ele-
ments could be detected. We observe that ForeSafe is the
only system that failed at detecting many of the activities
even in non-obfuscated samples, except for the SMS send-
ing. Since nothing risky was detected, we checked ForeSafe
against our non-obfuscated sample and then at least the sent
SMS was detected with the correct destination and text part
(but also did not flag the app as suspicious). No identifiers
are changed during our tests, making the emulator easily
detectable.
Tracedroid [51] reports for our test samples contain a lot of

information and provide a complete trace of the programs.
Even calls done reflectively are listed with the used param-
eters, making it possible to see all the invoked methods,
accessed classes, and fields. Reports are provided in text
files for each thread containing the execution trace, and
they completely reveal what happened while executing the
application. However, the systems fails at detecting activ-
ities performed by our Sleep and EmuDetect applications.
A screenshot next to a (flattened) call graph (PDF) and a
network dump are also provided. No strings that identify
the emulator are changed, so the service is easily detectable
and malicious activities can be suppressed. Declared ser-
vices in the Manifest file are also started, even if they are
not accessed from the application itself.
In addition to the analysis systems listed in Table 2, we

tried to test other known systems, but failed to do so for
various reasons. For example, the currently available ver-
sion of CopperDroid [40,48] was not able to analyze our ap-
plications as it required apps compiled against a rather old
Android version 2.2. According to its developers, Copper-

9

Table 3: Decompilation results for different tests.

GO1
GO2

CHO
CT DC BC SM RSA

M
C

jadx � � � � � � X (X) (X)
dex2jar � W � X X � M (X) I
Dare (JD-GUI) � W � I I � X (X) I
Dare (Soot) M X � I X � X (X) (X)

Droid supporting newer Android versions is currently under
construction [48].

5. EVALUATION OF DECOMPILERS
In this section, we provide an insight into using our frame-

work to apply obfuscations that target decompilers. In par-
ticular, we use fine-grained techniques that exploit differ-
ences between Java source code and Dalvik bytecode. Such
strategies are developed to make decompilers crash, thus not
revealing any useful information about the code.

5.1 Decompilation
In this section, we report the results of the test on four

freely available decompilers for Android applications: jadx,
dex2jar with JD-GUI, Dare with JD-GUI and Soot. These
decompilers try to transform DEX code to a Java-equivalent,
and are also adopted by some analysis tools. We use our
framework to inject code constructs that are allowed in DEX,
but that are not permitted in Java. This is done to see how
a decompiler would react when trying to parse such con-
structs.
We developed nine test cases, each of them implementing

a different construct. Condensed results can be found in
Table 3, where we use the following notations: If the test
case is handled correctly, we assign a “X” ; we assign a
“(X)” if the code is almost correct, and can very easily be
fixed by an analyst; invalid code will be marked with an
“I”, meaning that such code cannot be recompiled without
further modifications; syntactically correct code that reflects
different semantics will be marked as “W”; if instructions are
missing in the Java code, we note that with an “M” (meaning
that code can be hidden from such tools); if the decompiler
is not able to obtain any results for a method, but raises
an exception (when that happens, decompilers often print a
dump of the DEX code), we mark it with “�”.
Goto Instruction (GO1/GO2): The goto instructions

can pose problems to decompilers, as there is no direct
equivalent in Java, and the code can jump arbitrarily in-
side a method (including between catch handlers). Imagine
a method as shown in Listing 3, where the invoked method
will normally never throw an exception (with rare excep-
tions). Still, the invocation is covered by a try-item which
specifies two handlers. The problem here is that both han-
dlers refer each other and form a loop (line 3–4). While exe-
cuting the shown method, these handlers are never touched.
In Java, each handler forms a new scope and cannot interfere
with other handlers, making this construct impossible. All
decompile crash with this test (GO1) with the exception of
Dare (Soot), which completely ignores the try-catch clause.
In the second test (GO2), we tested how decompilers handle
the goto/32 instruction referring to itself. Example code is
shown in Listing 4. The code jumps to the invocation of a
method and then enters an infinite loop (line 2), which is
completely legit in DEX. Only Dare (Soot) works correctly

by substituting the instruction with an empty while (true)
loop. Dare (JD-GUI) and dex2jar call the method inside a
while (true) loop and jadx crashes with an exception.

Listing 3: Misuse of goto instruction, example (1).
1 0x00: invoke - static / range {}, Lsome / Class ;. someMethod

:()V
2 0x03: goto 0006 // +0003
3 0x04: goto 0005 // +0001
4 0x05: goto 0004 // -0001
5 0x06: return -void
6 catches : 1
7 0x00 - 0x03
8 Ljva/lang/ NullPointerException ; -> 0x05
9 Ljva/lang/ RuntimeException ; -> 0x04

Listing 4: Misuse of goto instruction, example (2).
1 0x00: goto 0004 // +0004
2 0x01: goto /32 #00000000
3 0x04: invoke - static / range {}, Lsome / Class ;. someMethod

:()V
4 0x07: goto 0001 // -0006
5 0x08: return -void

Catch Handler Order (CHO): Imagine a try-catch
clause that catches two exceptions in the same hierarchy,
and the second handler catches a subtype of the first han-
dled exception. If we reverse the handler order, the second
handler will never be executed, as the first one always han-
dles the thrown type. A matching handler is searched based
on the type in the order of declaration. The Java compiler
enforces correct ordering, as otherwise dead code would be
generated. A wrong order will therefore result in invalid
Java code if decompiled. For our example in Listing 5, the
correct result would be to simply remove the second handler.
As it turns out, no tool is able to decompile the method and
they all abort with an exception.

Listing 5: Wrong exception handler order.
1 0x00: const v0 , #int 42
2 0x03: invoke - static / range {}, Lsome / Class ;. someMethod

:()V
3 0x06: return -void
4 0x07: add -int/ lit16 v0 , v0 , #int 1
5 0x09: goto 0006 // -0003
6 0x0a: add -int/ lit16 v0 , v0 , #int 2
7 0x0c: goto 0006 // -0006
8 catches : 1
9 0x03 - 0x06

10 Ljava /lang/ Exception ; -> 0x0a
11 Ljava /lang/ RuntimeException ; -> 0x07

Clashing Types (CT): In DEX, some registers can have
different types depending on the usage. The instruction
const v0, 0, for example, assigns the DEX type ZERO to
register v0. This type can then be interpreted in multiple
ways: for reference types it refers to a null reference, for
booleans to false, and for primitive literals to 0. In our test,
we put such literal to fields with different types. As a re-
sult, only dex2jar correctly handles the types, while jadx
quits with a thrown exception. Dare (JD-GUI) tries to as-
sign 0 to a boolean field, while Dare (Soot) casts 0 to an
Object.
Dead Code (DC): Dead code refers to code that cannot

be reached at all. For our test, we inject valid code after
return instructions. Ideally, such code does not show up

10

in decompiled code. Results show that jadx quits with an
exception. dex2jar and Dare (Soot) correctly handle the
code. Dare (JD-GUI) returns completely invalid code with
wrong assignments such as this = 5;.
Bogus Code (BC): For this test, we injected an unused

class with a method containing invalid instructions. Exe-
cuting such a method would cause a crash. As the class
is unused, the application will still be installable and exe-
cutable. A subtle example would be, e. g., a method invoca-
tion using a register holding an uninitialized reference. We
quickly found code where all decompilers bail out with an
exception. With the sole exception of jadx, all tools stopped
working completely while analyzing the method in question,
skipping the rest of the program and providing no output in
the end. jadx only threw an exception for the methods in
question, but proceeded with other code.
Synthetic Modifier (SM):We also evaluated what hap-

pens if we add the synthethic modifier to classes, methods,
and fields. Technically, the modifier hints that the construct
was generated by the compiler and has no counterpart in the
source code. Bridge methods are treated as such. All decom-
pilers correctly handle the code (thus ignoring the synthetic
modifier—jadx also points out its presence by adding a com-
ment to the class)—with the exception of dex2jar, which
completely hides the content of the class or method.
Removing Signature Annotations (RSA): DEX

stores information about types in generic containers inside
Signature annotations, when needed. This is done in order
to deliver the information about what is being contained,
e. g., in a List<T> for debuggers. When removing signa-
tures, the tested decompilers are unable to infer types cor-
rectly. This causes missing type information with all tested
compilers, but may also break applications leveraging that
information during runtime.
Modifier Changes (MC): Modifying access flags can

also cause different results with different decompilers. In
Java, an enumerated type extends j.l.Enum<T> implicitly,
and thus cannot extend any other class. However, in DEX
it is possible to declare any class with an ENUM access
flag without severe runtime side effects. When decompiling
such bytecode, dex2jar will mark the class as an enum and
omit the superclass information completely. Dare (JD-GUI)
has the same behavior. jadx will still show super classes
correctly, like Dare (Soot) also does.
Judging from the results presented above, it is clear that

all decompilers fail for at least four out of nine test cases
and no test case is handled by all tools with the exception
of simply removing type information. Automatically creat-
ing such code reliably hinders the analysis of an obfuscated
application if the analysis depends on decompiled code. The
most robust decompiler based our tests is Dare (Soot).

6. PERFORMANCE EVALUATION
We now provide insight into the performance of apps mod-

ified by our framework. Although not the main focus of this
paper, we still address this topic because obfuscated mali-
cious or “protected” apps should not introduce huge slow-
downs, as users would reject such apps. We therefore eval-
uate how our modifications affect the execution speed and
discuss whether such obfuscation techniques are acceptable
from a user’s point of view.
We start with artificial benchmark results to get an idea

of how large the slowdown can be. We wrote four small test

cases for testing this: (1) Open 200 sockets and immedi-
ately close them again; (2) create 200 files; (3) create 100
Java processes that execute the “id” command in a shell
while reading its output; (4) loop over an array of 10,000
primitive integers, and sums them up. Since operations oc-
cur on primitive types, they are not obfuscated. The loop
condition check is done indirectly, though. Each loop itera-
tion therefore performs a corresponding method call instead
of just executing the original array-length instruction.
Each test is performed exactly twelve times. The best

and worst timings are discarded, and an average is taken
from the remaining ten values. The results for two differ-
ent smartphones are listed in Table 4. All of our described
obfuscation techniques in Section 3 have been applied. The
Galaxy Nexus runs Android 4.3 with Dalvik and the Nexus
5 runs Android 5 with enabled ART runtime.

Table 4: Benchmark results. Values in seconds.

Device Obf. Socket File Process Array
Nexus 5/ART 0.7756 0.1581 2.4756 0.0127
Nexus 5/ART X 1.4549 0.9422 2.6515 0.4890
Galaxy Nexus 1.5791 0.1972 1.6423 0.0375
Galaxy Nexus X 1.9243 0.8896 2.7481 0.8598

What can be seen is that the overhead can vary by a huge
margin, depending on the test. The least overhead is given
on the Nexus 5 for the process creation test. The test is
barely slower under obfuscation than the original one. The
second worst overhead is introduced for the file creation test
on the same device. This test is almost six times slower in
the obfuscated version. The worst slowdown is introduced
for the array-test. This test clearly shows how huge a slow-
down can be if only one single instruction is exchanged with
a semantically equivalent call over reflection. On the Nexus
5 the obfuscated sample is about 39 times slower. Modifying
instructions in loops that would be efficiently optimized by
the runtime, can lead to enormous slowdowns.
As these tests are purely artificial, we also evaluated what

a user experiences while using an obfuscated app. For this
test case, we took two identical Nexus 5 phones, and in-
stalled the original app in one and the obfuscated in an-
other. Most apps do not perform heavy operations on the
main thread, which is also responsible for the GUI render-
ing, making the perceived slowdown unnoticeable if we si-
multaneously perform the same actions on those two devices.
What causes huge slowdowns are recursive operations, e. g.,
parsers that parse JSON objects retrieved from the Internet.
Apps also feel slower if many instructions are triggered on
input events. Firefox, e. g., automatically starts suggesting
URLs. Such operation is very expensive, even when unob-
fuscated. These actions are noticeable by the user, but can
easily be blacklisted in order to avoid the slowdown—at the
cost of unobfuscated program code.
Besides runtime overhead, we also evaluated how our im-

plemented obfuscations affect the size of obfuscated appli-
cations. As several instructions are replaced with multiple
ones, the size can quickly grow. We found that the applica-
tion’s code increases by approximately 20% on average.
We deem both the runtime and size overhead acceptable,

as the user’s experience is only briefly impaired. Still, perfor-
mance penalties caused by, e. g., method and string lookups,

11

(especially in loops) do introduce slowdowns which can fur-
ther be optimized by means of (more) caching.

7. DISCUSSION AND LIMITATIONS
In the following, we discuss the limitations of our tool and

how they can lead to semantically different execution or even
broken code. We also explain how limitations could be fixed
in future versions of our approach. Renaming classes, meth-
ods, and fields is tricky for event-driven applications, as they
may be executed by external parts out of our control. For
Android, the framework itself executes well-defined entry
points which can be obfuscated if the definition is appropri-
ately changed in the Manifest. For example, an application
may leverage hard-coded entry points. One way to tackle
the problem is through blacklisting.
The same is true for code with implicit dependencies,

which expect, e. g., fields or methods to have certain names.
While we can control the code of our application, we may
still be restricted by the implicit API choices of the frame-
work or of other libraries, e. g., Bundle.CREATOR field. With-
out analyzing the behavior of the app, it is hard to know
which elements can be freely changed.
During our research, we encountered multiple applications

calling methods from native libraries, causing the afore-
mentioned problems. In order to make those invocations
work correctly, we would need to instrument all these calls
through JNI interfaces to point them to renamed methods.
Some bugs occurred within obfuscated apps, including re-

jections by the Android verifier and crashes during install.
However, that is expected for some corner cases when work-
ing with a prototype—we are progressively fixing our frame-
work to solve such bugs. As our tool will be released, con-
tributors can also modify some of its parts to improve its
functionalities. Additionally, one can exclude problematic
application parts by means of a blacklist in order to skip
them while obfuscating.
Android also has a quite limited amount of available stack

memory by default. This can be changed for new threads,
but not for the framework threads that execute most the
of application’s code. If all invocations are replaced with
indirect ones, for each called method two additional methods
are put onto the call stack. This can cause the stack to
overflow for some deep call paths. Notable examples are
libraries that do recursive parsing for, e. g., JSON objects.
By utilizing static or dynamic instrumentation frameworks

and dynamic analyzers in general, it is always possible to de-
obfuscate a program as the runtime semantics must stay the
same. Applied obfuscations in general make this task more
time consuming.

7.1 Skipped Obfuscation Steps
Although our tool is able to add bogus entry points into an

application in question, we did not evaluate how tools deal
with it. Static analyzers are already unable to obtain any
meaningful results about the program semantics with just
our other techniques enabled. While they still can analyze
generic aspects of applications, the need to further distract
them with additional entry points is unnecessary. Dynamic
analyzers also did not require that feature, as all but one
emulator can easily be detected with simple tests.
We did not address the injection of opaque predicates [12],

which can be used to amplify the path explosion problem
in multipath execution [29] and dynamic symbolic execu-

tion [46]. This is because the two existing prototypes for
symbolic execution, SymDroid [25] and ACTEve [5, 6], are
still very rough prototypes that would require significant ef-
fort to make them usable for our purposes. To the best of our
knowledge, HARVESTER is the only framework that imple-
ments multipath execution, but it is currently not available.
We also omitted techniques like method merging and in-

lining, as well as moving methods and fields around. Dy-
namic analyzers are not affected by this effect, and static
ones are already blind with respect to the performed obfus-
cations. We also do not obfuscate literal values of 0 and 1,
due to their varying semantics.

8. CONCLUSION
In this paper, we evaluated how current analysis tools can

cope with heavily obfuscated apps. To do so, after having
retrieved all publicly available static and dynamic analyzers,
we have developed a framework for automated obfuscation
of Android apps. Our framework implements fine-grained
obfuscation strategies that can be used as test benches for
evaluating the robustness of analysis tools.
In our analysis, we targeted both static and dynamic an-

alyzers, including also decompilers. Our test results let us
conclude that many analysis tools are not capable of ana-
lyzing obfuscated apps in a satisfying manner.
The worrying aspect is that the code modifications as de-

scribed in Section 3 can be automatically applied on arbi-
trary apps without needing access to source code. Malicious
software can easily piggyback obfuscated apps, and clan-
destinely execute their payload while most detection sys-
tems remain blind. To this end, the recent work by Zhau-
niarovich et al. [61] and Rasthofer et al. [38] shows a great
promise, helping to bring static analysis methods again us-
able even against heavily obfuscated apps.
Availability: To foster research on analysis of obfuscated

apps and increase the robustness of existing methods, we are
offering our framework for research purposes upon request.

9. REFERENCES
[1] Anubis – Malware Analysis for Unknown Binaries.

https://anubis.iseclab.org/.
[2] dex2jar. http://code.google.com/p/dex2jar/.
[3] DroidBox. http://code.google.com/p/droidbox/.
[4] smali. http://code.google.com/p/smali/.
[5] S. Anand and M. J. Harrold. Heap cloning: Enabling

dynamic symbolic execution of java programs. In
ASE, 2011.

[6] S. Anand, M. Naik, M. J. Harrold, and H. Yang.
Automated concolic testing of smartphone apps. In
SIGSOFT FSE, 2012.

[7] Android Developers. Platform Versions, June 2014.
http://developer.android.com/resources/
dashboard/platform-versions.html.

[8] Anonymous. To be released. Technical report, 2015.
[9] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele,

C. Kruegel, G. Vigna, and Y. Chen. EdgeMiner:
Automatically Detecting Implicit Control Flow
Transitions through the Android Framework. In
Symposium on Network and Distributed System
Security (NDSS), 2015.

[10] P. P. Chan, L. C. Hui, and S. M. Yiu. DroidChecker:
Analyzing Android applications for capability leak. In

12

https://anubis.iseclab.org/
http://code.google.com/p/dex2jar/
http://code.google.com/p/droidbox/
http://code.google.com/p/smali/
http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/resources/dashboard/platform-versions.html

ACM Conference on Security and Privacy in Wireless
and Mobile Networks, WISEC ’12, 2012.

[11] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner.
Analyzing inter-application communication in
Android. In Intern. Conf. on Mobile Systems,
Applications, and Services (MobiSys). ACM, 2011.

[12] C. Collberg, C. Thomborson, and D. Low. A
Taxonomy of Obfuscating Transformations. Technical
report, University of Auckland, 1997.

[13] A. Desnos and G. Gueguen. Android: From reversing
to decompilation. In Proc. of Black Hat Abu Dhabi,
2011.

[14] W. Enck. Defending users against smartphone apps:
Techniques and future directions. In 7th International
Conference on Information Systems Security (ICISS).
Springer, 2011.

[15] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. Sheth. TaintDroid: An
Information-Flow Tracking System for Realtime
Privacy Monitoring on Smartphones. In OSDI.
USENIX Association, 2010.

[16] A. P. Felt, E. Chin, S. Hanna, D. Song, and
D. Wagner. Android Permissions Demystified. In CCS.
ACM, 2011.

[17] ForeSafe. ForeSafe Online Scanner.
http://www.foresafe.com/scan.

[18] C. Fritz, S. Arzt, S. Rasthofer, E. Bodden, A. Bartel,
J. Klein, Y. le Traon, D. Octeau, and P. McDaniel.
Highly precise taint analysis for Android applications.
Technical Report TUD-CS-2013-0113, TU Darmstadt,
2013.

[19] A. P. Fuchs, A. Chaudhuri, and J. S. Foster.
SCanDroid: Automated security certification of
Android applications. Technical Report CS-TR-4991,
Department of Computer Science, University of
Maryland, College Park, Nov. 2009.

[20] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham,
N. Nguyen, and M. C. Rinard. Information Flow
Analysis of Android Applications in DroidSafe. In
Symposium on Network and Distributed System
Security (NDSS), 2015.

[21] M. Grace, Y. Zhou, Z. Wang, and X. Jiang.
Systematic detection of capability leaks in stock
Android smartphones. In NDSS, 2012.

[22] J. Hoffmann, M. Ussath, T. Holz, and
M. Spreitzenbarth. Slicing Droids: Program Slicing for
Smali Code. In SAC. ACM, 2013.

[23] H. Huang, S. Zhu, P. Liu, and D. Wu. A framework
for evaluating mobile app repackaging detection
algorithms. In TRUST. Springer, 2013.

[24] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang.
Asdroid: Detecting stealthy behaviors in android
applications by user interface and program behavior
contradiction. In Proceedings of the 36th International
Conference on Software Engineering. ACM, 2014.

[25] J. Jeon, K. K. Micinski, and J. S. Foster. SymDroid:
Symbolic Execution for Dalvik Bytecode. Technical
report, Department of Computer Science, University
of Maryland, College Park, 2012.

[26] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and
L. Bauer. Android taint flow analysis for app sets. In

Proceedings of the 3rd ACM SIGPLAN International
Workshop on the State of the Art in Java Program
Analysis, SOAP ’14. ACM, 2014.

[27] L. Li, A. Bartel, J. Klein, Y. L. Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel.
I know what leaked in your pocket: uncovering
privacy leaks on android apps with static taint
analysis. CoRR, abs/1404.7431, 2014.

[28] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. CHEX:
Statically vetting Android apps for component
hijacking vulnerabilities. In CCS. ACM, 2012.

[29] A. Moser, C. Krügel, and E. Kirda. Exploring
Multiple Execution Paths for Malware Analysis. In
IEEE Symposium on Security and Privacy. IEEE
Computer Society, 2007.

[30] S. Neuner, V. V. der Veen, M. Lindorfer, M. Huber,
G. Merzdovnik, M. Mulazzani, and E. R. Weippl.
Enter sandbox: Android sandbox comparison. In
Proceedings of the IEEE Mobile Security Technologies
Workshop (MoST). IEEE, 2014.

[31] NVISO. NVISO ApkScan – Scan Android applications
for malware. http://apkscan.nviso.be/.

[32] D. Octeau, W. Enck, and P. McDaniel. The ded
Decompiler. Technical Report NAS-TR-0140-2010,
Networking and Security Research Center,
Pennsylvania State University, Sept. 2010.

[33] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden,
J. Klein, and Y. Le Traon. Effective Inter-component
Communication Mapping in Android with Epicc: An
Essential Step Towards Holistic Security Analysis. In
USENIX Security Symposium, 2013.

[34] G. Paller. Dedexer.
http://dedexer.sourceforge.net/.

[35] T. Petsas, G. Voyatzis, E. Athanasopoulos,
M. Polychronakis, and S. Ioannidis. Rage against the
virtual machine: hindering dynamic analysis of
Android malware. In EUROSEC. ACM, 2014.

[36] M. Protsenko and T. Müller. Pandora applies
non-deterministic obfuscation randomly to android. In
MALWARE. IEEE, 2013.

[37] S. Rasthofer, S. Arzt, and E. Bodden. A
machine-learning approach for classifying and
categorizing Android sources and sinks. In 2014
Network and Distributed System Security Symposium
(NDSS), 2014.

[38] S. Rasthofer, S. Arzt, M. Miltenberger, and
E. Bodden. Harvesting runtime data in android
applications for identifying malware and enhancing
code analysis. Technical Report TUD-CS-2015-0031,
TU Darmstadt, 2015.

[39] V. Rastogi, Y. Chen, and X. Jiang. Catch Me If You
Can: Evaluating Android Anti-Malware Against
Transformation Attacks. IEEE Transactions on
Information Forensics and Security, 2014.

[40] A. Reina, A. Fattori, and L. Cavallaro. A system
call-centric analysis and stimulation technique to
automatically reconstruct Android malware behaviors.
In Proceedings of the 6th European Workshop on
System Security (EUROSEC), 2013.

[41] S. Rosen, Z. Qian, and Z. M. Mao. AppProfiler: A
flexible method of exposing privacy-related behavior
in Android applications to end users. In Proc. of the

13

http://www.foresafe.com/scan
http://apkscan.nviso.be/
http://dedexer.sourceforge.net/

3rd ACM Conf. on Data and Application Security and
Privacy, CODASPY. ACM, 2013.

[42] G. Sarwar, O. Mehani, R. Boreli, and M. A. Kaafar.
On the effectiveness of dynamic taint analysis for
protecting against private information leaks on
Android-based devices. In SECRYPT, 2013.

[43] E. J. Schwartz, T. Avgerinos, and D. Brumley. All You
Ever Wanted to Know about Dynamic Taint Analysis
and Forward Symbolic Execution (but Might Have
Been Afraid to Ask). In IEEE Symposium on Security
and Privacy. IEEE Computer Society, 2010.

[44] Y. Shao, X. Luo, C. Qian, P. Zhu, and L. Zhang.
Towards a scalable resource-driven approach for
detecting repackaged android applications. In
Proceedings of the 30th Annual Computer Security
Applications Conference. ACM, 2014.

[45] M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee.
Impeding Malware Analysis Using Conditional Code
Obfuscation. In NDSS, 2008.

[46] D. X. Song, D. Brumley, H. Yin, J. Caballero,
I. Jager, M. G. Kang, Z. Liang, J. Newsome,
P. Poosankam, and P. Saxena. BitBlaze: A New
Approach to Computer Security via Binary Analysis.
In 4th International Conference on Information
Systems Security (ICISS). Springer, 2008.

[47] M. Spreitzenbarth, F. C. Freiling, F. Echtler,
T. Schreck, and J. Hoffmann. Mobile-Sandbox:
Having a Deeper Look into Android Applications. In
SAC. ACM, 2013.

[48] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro.
CopperDroid: Automatic Reconstruction of Android
Malware Behaviors. In Symposium on Network and
Distributed System Security (NDSS), 2015.

[49] Univ. of Arizona - Dept. of Computer Science.
SandMark: A Tool for the Study of Software
Protection Algorithms.
http://sandmark.cs.arizona.edu/index.html.

[50] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam,
and V. Sundaresan. Soot - a Java Bytecode
Optimization Framework. In Proc. of the Conference
of the Centre for Advanced Studies on Collaborative
Research, CASCON. IBM Press, 1999.

[51] V. van der Veen and C. Rossow. Tracedroid.
http://tracedroid.few.vu.nl.

[52] T. Vidas and N. Christin. Evading Android runtime
analysis via sandbox detection. In S. Moriai,
T. Jaeger, and K. Sakurai, editors, ASIACCS. ACM,
2014.

[53] WALA developers. T.J. Watson Libraries for Analysis
(WALA).

[54] F. Wei, S. Roy, X. Ou, and Robby. Amandroid: A
precise and general inter-component data flow analysis
framework for security vetting of android apps. In
Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2014.

[55] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos.
ProfileDroid: Multi-layer profiling of Android
applications. In Proceedings of the 18th Annual
International Conference on Mobile Computing and
Networking, Mobicom ’12. ACM, 2012.

[56] R. Wisniewski. android-apktool – A tool for reverse
engineering Android apk files.

http://code.google.com/p/android-apktool/.
[57] M. Xia, L. Gonga, Y. Lyu, Z. Qi, and X. Liu. Effective

real-time android application auditing. In 36th IEEE
Symposium on Security and Privacy, San Jose, CA,
2015.

[58] L. K. Yan and H. Yin. DroidScope: Seamlessly
reconstructing the OS and Dalvik semantic views for
dynamic Android malware analysis. In Proceedings of
the 21st USENIX Security Symposium. USENIX
Association, 2012.

[59] C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and
P. Porras. Droidminer: Automated mining and
characterization of fine-grained malicious behaviors in
android applications. In Proceedings of the 19th
European Symposium on Research in Computer
Security (ESORICS’14), September 2014.

[60] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and
X. S. Wang. AppIntent: Analyzing sensitive data
transmission in Android for privacy leakage detection.
In CCS. ACM, 2013.

[61] Y. Zhauniarovich, M. Ahmad, O. Gadyatskaya,
B. Crispo, and F. Massacci. StaDynA: Addressing the
Problem of Dynamic Code Updates in the Security
Analysis of Android Applications. In Proceedings of
the 5th ACM Conference on Data and Application
Security and Privacy, CODASPY ’15, 2015.

[62] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, You,
Get Off of My Market: Detecting Malicious Apps in
Official and Alternative Android Markets. In NDSS,
2012.

APPENDIX
A. IMPLEMENTED OBFUSCATIONS
Table 5 gives an overview of the features of our framework.

The entries marked with “†” were implemented, but not ana-
lyzed as a part of this paper. Package flattening removes the
class hierarchies from obfuscated binaries. Method removal
and method call removal remove unnecessary methods and
their invocations, such as toString() methods and calls to
logging facilities, to avoid leaking information to analysts.
Access flags changes can be used to avoid decompilation
with tools that fail for such binaries.

14

http://sandmark.cs.arizona.edu/index.html
http://tracedroid.few.vu.nl
http://code.google.com/p/android-apktool/

Table 5: Implemented obfuscation techniques († = not evaluated)
Useful against

Technique Static Dynamic

D
at
a Constant Hiding X

Package Flattening † X

La
yo

ut

Identifier Renaming X
Annotation Removal † X X
Debug Information Removal † X X
Removal of Unused Strings † X
Method Call Removal † X
Method Removal † X

C
on

tr
ol Indirect Invocations and Accesses X X

Entry Point Pollution † X X

P
re
ve
nt
iv
e

Dynamic Analysis Evasion X
Anti-tainting X X
Access Flag Changes † X

15

	Introduction
	Background & Related Work
	Android Application Analyzers
	Basic and General Analysis Tools
	Tools Analyzing ICC Vulnerabilities
	Tools Analyzing Application Behavior

	Android Obfuscators

	Program Analysis Assumptions
	Dynamic Analysis Evasion
	Static Analysis Evasion

	Evaluating the Robustness of Analysis Tools
	Implementation
	Evaluation of Static Analysis Systems
	Evaluation of Dynamic Analysis Systems

	Evaluation of Decompilers
	Decompilation

	Performance Evaluation
	Discussion and Limitations
	Skipped Obfuscation Steps

	Conclusion
	References
	Implemented Obfuscations

