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Abstract

We consider multi-label classification problems in application scenarios where classifier accu-
racy is not satisfactory, but manual annotation is too costly. In single-label problems, a well
known solution consists of using a reject option, i.e., allowing a classifier to withhold unreliable
decisions, leaving them (and only them) to human operators. We argue that this solution can be
exploited also in multi-label problems. However, the current theoretical framework for classi-
fication with a reject option applies only to single-label problems. We thus develop a specific
framework for multi-label ones. In particular, we extend multi-label accuracy measures to take
into account rejections, and define manual annotation cost as a cost function. We then formalise
the goal of attaining a desired trade-off between classifier accuracy on non-rejected decisions,
and the cost of manually handling rejected decisions, as a constrained optimisation problem. We
finally develop two possible implementations of our framework, tailored to the widely used F
accuracy measure, and to the only cost models proposed so far for multi-label annotation tasks,
and experimentally evaluate them on five application domains.
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1. Introduction

A huge amount of text documents, images, videos and other kinds of multimedia data is
currently available in digital form. Annotating them with semantic labels is necessary for their
effective management and retrieval. Manual annotation is the traditional approach, but is infea-
sible for large amounts of data [1, 2]. Accordingly, automatic annotation techniques have been
the subject of a considerable research effort over the past ten years in the machine learning and
pattern recognition communities [3, 4, 5, 6]. Their accuracy is however not satisfactory in sev-
eral real applications (see, e.g., [1] for image annotation, and [2, 7] for text annotation). In such
case, automatic annotation tools can be used only as a support for human annotators, who remain
responsible of the final decisions (see, e.g., [1, 7]).

In pattern recognition applications, a well known solution to attain a trade-off between clas-
sifier accuracy and cost of manual labelling is to use a reject option, i.e., allowing a classifier
to withhold decisions deemed unreliable, leaving them (and only them) to human operators. In
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particular, this can be useful when the cost of misclassifications is higher than the cost of manual
labelling [8, 9]. We argue that a reject option may be useful also in annotation tasks, to attain a
trade-off between the accuracy of automatic annotation and the cost (time) of manual annotation,
in the case when: (i) manual annotation is too costly; (ii) automatic annotation techniques are not
accurate enough; (iii) a certain amount of annotation errors is nevertheless tolerated (e.g., due to
subjectiveness). However, the use of a reject option in annotation tasks has not been considered
in the literature yet, except for our preliminary works [10, 11, 12]. Moreover, its formalisation in
this context raises some theoretical issues. To this aim, the classical framework of [8, 9] can not
be applied, since it refers to single-label (SL) problems only, and, in particular, to performance
measures defined as the expected cost of the outcome of classifier decisions, including rejections.
Annotation tasks are multi-label (ML) problems instead, and accuracy measures (e.g., precision
and recall) are not defined as the expected cost of the outcome of classifier decisions. Note that
in [13] a reject option based on a “multi-label classification rule” was proposed, but is not related
to ML classification as intended in this work. Indeed, SL classifiers with loss function given by
the expected cost were considered in [13]. The term “multi-label” was used to denote the fact
that the proposed reject option was implemented by allowing a SL classifier to output more than
one class label, in case of uncertainty about the true one; in this case, a human operator has to
choose one of these labels. In our setting, samples can be assigned to more than one class; a
ML classifier can withhold the decision about one or more classes, and each rejected decision is
taken by a human operator.

Motivated by the above premises, that are discussed in detail in Sect. 2, in this paper we
develop a specific framework for ML classification with a reject option (Sect. 3). We first extend
ML accuracy measures to take into account only non-rejected decisions about the relevance of
the considered classes to a given sample, and formalise manual annotation cost as a cost func-
tion. This allows us to formalise the goal of attaining a trade-off between the two heterogeneous
measures of classifier accuracy and manual annotation cost of rejections, as a constrained opti-
misation problem, which plays the role of the classifier learning problem. We also address two
practical issues related to classifier design: how to define a suitable ML decision function with a
reject option, and how to make the corresponding learning problem tractable. We then develop in
Sect. 4 two possible implementations of our framework, tailored to the widely used F accuracy
measure, and to two cost models proposed in [1] for image annotation, which are the only models
formalised for ML problems so far. Our implementations are experimentally evaluated in Sect. 5
on eight benchmark data sets related to text, video, image, gene and music annotation tasks. The
contributions of this work and directions for future research are finally discussed in Sect. 6.

2. Background

In this section we describe the framework for SL classification with a reject option of [8, 9],
and give an overview on ML classification.

2.1. Single-label classification problems with a reject option

In SL classification problems each sample belongs to a single class, out of N predefined ones.
We denote with x ∈ X ⊆ Rn the feature vector of a given sample in a n-dimensional feature space
X, and with y ∈ Y = {1, . . . ,N} the corresponding class label. A classifier implements a decision
function f : X → Y. In statistical pattern recognition, SL problems have been formalised
under the minimum risk framework, in which the outcomes of classifier decisions incur a cost
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defined by a loss function L(y, f (x)). Classifier performance is measured as the expected risk
E[L(Y, f (X)] (uppercase letters denote random variables). The simplest loss function is given by
L(y, f (x)) = I[ f (x) = y], where I[a] = 1 (0), if a =True (False). The corresponding E[L(Y, f (X)]
equals the misclassification probability P[ f (X) , Y], which is minimised by assigning a sample
to the class exhibiting the highest posterior (Bayes rule): f (x) = arg maxk∈Y P[Y = k|x].

In applications where misclassifications are more costly than manual labelling, they can be
reduced using a reject option, i.e., allowing the classifier to withhold uncertain decisions, and
leaving them to human operators. A rejection can be conveniently represented as a fictitious
class label 0: the decision function becomes f : X → {0}

⋃
Y, and the loss function is extended

to include the cost of manually handling rejections, L(y, 0) [8]. Note that, under this setting,
classifier performance can be still measured as the expected risk. The simplest loss function with
a reject option assigns the same cost to any rejection, L(y, 0) = λR ∈ (0, 1). The corresponding
expected risk is a linear combination of misclassification and rejection probabilities: P[ f (X) ,
Y, 0] + λRP[ f (X) = 0] [9]. The optimal decision rule is an extension of Bayes’ rule: it rejects
samples whose maximum posterior is below a threshold equal to 1 − λR (Chow’s rule). In this
case, classifier performance can also be evaluated through the error-rejection curve, i.e., the
functional relation between misclassification and rejection probabilities provided by Chow’s rule
for all possible λR values.

2.2. Multi-label classification
In ML problems each sample can belong to more than one class. We will denote the class

labels of a sample as y = (y1, . . . , yN) ∈ {−1,+1}N , where yk = +1 (−1) means that x (does not)
belong to class k. The decision function of a ML classifier has thus the form f : X → {−1,+1}N .

Accuracy measures. ML problems usually occur in retrieval tasks, where performance is
often measured as the probability that a retrieved sample is relevant to a query (precision), and
the probability to retrieve a relevant sample (recall). In a ML classification problem, each class
can be viewed as the set of samples that are relevant to a distinct query. Accordingly, the label-
wise definition of precision and recall for class k, and the corresponding empirical estimates from
a labelled data set, are defined as:

pk = P[Yk = +1 | fk(X) = +1] , rk = P[ fk(X) = +1 | Yk = +1] , (1)

p̂k = T Pk/(T Pk + FPk) , r̂k = T Pk/(T Pk + FNk) , (2)

where T Pk, FPk and FNk denote respectively the number of true positive, false positive and false
negative samples. A widely used scalar combination of pk and rk is van Rijsbergen’s F measure:

Fβ,k =
1 + β2

1/pk + β2/rk
∈ (0, 1] , (3)

where β ∈ [0,+∞] allows one to give a different weight to pk and rk. The above measures can
also be defined sample-wise, by viewing a class as the set of queries that are relevant to a given
sample [5]. Other sample-wise measures also exist, like Hamming loss and ranking loss [5].

For label- and sample-wise measures, the overall accuracy is empirically defined by aver-
aging respectively over classes and samples (“macro-averaging”). In particular, the label-wise
macro F measure is given by:

F̂M
β =

1
N

N∑
k=1

(
1 +

1
1 + β2

FPk + β2FNk

T Pk

)−1

. (4)
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The overall accuracy can also be empirically measured by “micro-averaging”, i.e., by considering
all predictions over labels and samples simultaneously in the computation of precision and recall
of Eq. (2) [3, 5]. This makes micro-averaged measures usually more difficult to maximise than
macro-averaged ones. In particular, the micro F measure is defined as:

F̂m
β =

1 +
1

1 + β2

∑N
k=1(FPk + β2FNk)∑N

k=1 T Pk

−1

. (5)

Manual annotation cost. Manual annotation cost can be measured in terms of annotation
time. For a given sample, it may depend on several application-specific factors, besides the num-
ber N of decisions to take. For instance: the number of ‘relevant’ and ‘non-relevant’ decisions,
the time needed to analyse a sample, the specific annotation technique, the correlation between
labels (deciding whether labelling or not a sample as belonging to two or more correlated classes
may require a lower time than for independent classes), and class frequency (deciding for rare
classes may require a higher time than for common ones). To our knowledge, no general cost
model has been developed so far for ML problems, and only two specific models have been pro-
posed, for the tagging and browsing image annotation techniques [1]. We summarise them in the
following, since we will exploit them in the rest of this paper.

Tagging consists of annotating one image at a time, with respect to all the classes. It was
modelled in [1] by assuming that an image is first analysed for an average “setup” time ts, and
that an average time tf is then spent for assigning (e.g., typing, or selecting) the labels of each
relevant class, while deciding about non-relevant classes requires a negligible time. Browsing
consists instead of annotating a set of images, with respect to a given class. It was modelled
by assuming that an average time tp and tn is spent to decide respectively whether each image
is relevant or not to the given class, with tn < tp. In both cases, an additional zero-mean noise
term ε is considered. Note that these models do not take into account the possible effects of class
frequency and correlation. Denoting with Np(x) the number of classes relevant to image x, the
respective annotation times are given by:

tt = ts + Np(x)tf + ε, tb = Np(x)tp + [N − Np(x)]tn + ε . (6)

Accuracy-cost trade-off. In SL problems classification accuracy and cost of rejections are
homogeneous quantities, defined in terms of costs of classification outcomes. Their trade-off

can thus be evaluated using a single measure, the expected risk (cost). In ML problems these
measures are heterogeneous instead, since accuracy is not associated to costs of classification
outcomes. This implies that, if a reject option is used, their trade-off has to be evaluated by
considering them separately.

3. A framework for multi-label classification with a reject option

In this section we formalise the problem of designing a ML classifier with a reject option, by
defining the form of the decision function and the measures of classification accuracy and cost of
rejections. We then define the corresponding learning problem, and discuss some implementation
issues.

3.1. Decision function and performance measure
Decision function. We consider the most general kind of ML decision function with a reject

option: it allows a classifier to withhold any subset of the N decisions (including none, and
4



fk(x) +1 0 -1

yk
+1 T Pk RRk FNk
-1 FPk NRk T Nk

Table 1: Contingency table for class k, for a ML classifier with a reject option. RRk and NRk denote respectively rejected
decisions for Relevant and Non-relevant samples.

all of them) whether labelling a given sample as belonging or not to the corresponding classes.
Denoting a rejection decision with the label ‘0’ , such kind of decision function has the form:

f : X → {−1, 0,+1}N . (7)

Classification accuracy. When a reject option is used, accuracy must be evaluated over non-
rejected decisions only. To this aim, existing ML accuracy measures have to be extended. In
this work we focus on the two most widely used measures, i.e., the label-wise macro F, and the
micro F (see Sect. 2.2). Other label- and sample-wise measures can be extended similarly.

We start from precision and recall of a single class (Eq. 1). By analogy with SL problems, in
which accuracy is defined as the conditional probability that a sample is correctly classified, given
that it has not been rejected [9], we extend the definition of precision and recall by conditioning
the corresponding probabilities to fk(x) , 0 (note that the original definition of precision is
implicitly conditioned to fk(x) , 0, and thus remains unchanged):

pk = P[Yk = +1 | fk(X) = +1], rk = P[ fk(X) = +1 | Yk = +1, fk(X) , 0].

The empirical estimates p̂k and r̂k can still be obtained as Eq. (2); however, the values T Pk, FPk,
FNk and T Nk must be computed over non-rejected decisions only, according to the contingency
table reported in Table 1. Similarly, the F measure (either for a class, or a sample), as well
as the macro (both label- and sample-wise) and micro precision, recall and F measures, can be
computed as in Sect. 2.2, using the above contingency table.

Manual annotation cost. It can be formalised, similarly to SL problems, through a cost
function C(y, f (x)). In this case, it is defined as the time needed to annotate x, considering only
the classes k whose decision has been rejected, i.e., fk(x) = 0. The exact expression is clearly
application-specific. For instance, the cost function corresponding to the tagging and browsing
models for image annotation (Eq. 6) is given by, respectively:

Ct(y, f (x)) = ts + tf
N∑

k=1

I[yk = +1, fk(x) = 0] ,

Cb(y, f (x)) =

N∑
k=1

(
tpI[yk = +1, fk(x) = 0] + tnI[yk = −1, fk(x) = 0]

)
.

(8)

3.2. Classifier learning problem

Let f (·; θ) be the chosen decision function, where θ is a set of parameters to be set by a
learning algorithm, and A(θ) the corresponding value of the chosen accuracy measure, on non-
rejected decisions. The latter can be increased at the expense of a higher amount of rejections,
i.e., a higher manual annotation cost, similarly to SL problems [9]. It is thus necessary to find
a trade-off between them, according to application requirements. An interesting kind of appli-
cation requirement, which is often used also in SL problems, is to maximise accuracy, with the
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constraint that the expected manual annotation cost does not exceed a given value Cmax. This
can be formalised as a constrained optimisation problem, which plays the role of the classifier
learning problem, in terms of empirical estimates of accuracy and cost on a given training set of
M samples:

max
θ

Â(θ), s.t.
1
M

M∑
i=1

C(yi, f (xi; θ)) ≤ Cmax . (9)

Two other kinds of application requirements can be expressed, in terms of accuracy and cost:
(i) minimising the expected cost, with the constraint that accuracy is not below a given value
Amin; (ii) attaining an accuracy not lower than Amin and an expected cost not higher than Cmax.
We do not discuss them in the rest of this paper, as they can be dealt with by solving problem 9
(see Sect. 4).

Consider finally the choice of f (·; θ). Note that in SL problems the optimal decision rule
with a reject option (Chow’s rule) is analytically known, in terms of posterior probabilities (see
Sect. 2.1). One can thus use the plug-in principle to define a decision function in practice (when
the exact posteriors are unknown), i.e., applying Chow’s rule to posteriors’ estimates. A similar
solution could be used also for ML problems. However, for some ML accuracy measures, it
may be not possible to obtain the optimal solution of problem (9) analytically. In particular, in
Appendix A (online supplementary material) we show that this is the case of the micro and
macro F measures. In such cases, only heuristic choices of f (·; θ) can be made. A possible
criterion is proposed in the next section.

3.3. Implementation issues

Here we discuss issues related to the choice of a decision function f (·; θ), and to the devel-
opment of optimisation algorithms to solve problem (9).

First, a decision function with a reject option can be defined in two different ways. One is
to define a function f (·; θ) that directly maps form feature space X to decision space {−1, 0, 1}N .
An alternative approach is to first training a classifier without a reject option, g : X → {−1, 1}N

(or g : X → RN , for classifiers that provide real-valued scores), and then defining a decision
function f (·; θ) that maps from the outputs of g(·) to {−1, 0, 1}N . The latter approach is widely
used in SL problems (see, e.g., [14, 15]).

Consider now the issue of developing an optimisation algorithm for solving problem (9). De-
pending on the cost and decision functions, and on the accuracy measure, it can be very difficult
to find an effective and efficient optimisation algorithm, and (9) may even be computationally in-
tractable. A zero-effort solution is to resort to general-purpose, although suboptimal, algorithms
(e.g., genetic algorithms). Another possibility is to choose a function f (·; θ) which makes it eas-
ier to develop a specific algorithm (possibly optimal, if any) for solving problem (9). However,
this may be not sufficient. For instance, we were not able to find any such f (·; θ), in the specific
cases when Â = F̂M or Â = F̂m, and either of the cost functions (8) is used. In such a case, a
further possibility is to first define a proper approximation of the cost function at hand, and then
to choose a suitable f (·; θ). Some examples of the latter strategy are given in the next section.

4. Implementation of multi-label classifiers with a reject option

In this section we propose a possible implementation of ML classifiers with a reject option,
following the framework of Sect. 3. We focus on the widely used micro and (label-wise) macro
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F accuracy measures, and on the cost functions of Eq. (8), that correspond to the only formal
cost models proposed so far for annotation tasks [1]. Note that, although these models refer
to image annotation, they can be valid for other annotation tasks as well, if similar annotation
techniques are used. With regard to the choice of the decision function, we will use the second
approach mentioned in Sect. 3.3, i.e., defining a rejection criteria on the outputs of a trained ML
classifier without a reject option. We start by defining suitable approximations of the considered
cost models, and the corresponding decision functions, for the reasons explained in Sect. 3.3. We
then develop the respective learning algorithms.

4.1. Approximation of cost models and choice of decision functions
Browsing cost model. The browsing cost function of Eq. (6)(right) can be approximated,

when tp ≈ tn, by setting tp = tn = td, i.e., assuming that deciding about the relevance of any class
to a sample requires a constant time td, independently on the actual relevance. This leads to:

C(y, f (x; θ)) = td
N∑

k=1

I[ fk(x; θ) = 0] . (10)

This implies that the overall manual annotation cost is proportional to the number of rejected
decisions, regardless of which decisions are rejected, i.e., of how they are distributed across
samples, and of the corresponding correct decisions (either ‘relevant’ or ‘non-relevant’). This
allows one to control the accuracy-cost trade-off by tuning the fraction of rejected decisions, that
we call “rejection rate”. Using cost function 10, we will show that learning problem (9) can be
simplified by choosing a decision function f (·; θ) that allows the classifier to reject the decision
about each individual class, independently on the other classes. We call this kind of rejection
strategy as “rejection of decisions”.

Tagging cost model. The tagging cost function of Eq. (6)(left) can be approximated, when
ts >> Np(x)tf , by assuming that manually handling a sample that contains rejected decisions
requires a constant time ts, regardless of the number of rejected decisions:

C(y, f (x; θ)) = tsI[∨N
k=1 fk(x; θ) = 0] . (11)

This can be realistic in tasks in which most of the annotation time is spent for analysing a sample,
and a relatively much lower time is needed to decide about the relevance of each class. The
overall manual annotation cost is thus proportional to the number of samples for which at least
one decision is rejected. Problem (9) can thus be simplified by choosing a decision function
f (·; θ) that allows the classifier to reject either all the N decisions for a sample, or none of them.
The corresponding accuracy-cost trade-off can thus be controlled by choosing the fraction of
samples that will be manually annotated. We will refer to them as “rejected samples”, and to
their fraction as “rejection rate”. We call this kind of rejection strategy “rejection of samples”.

4.2. Implementation under the approximated browsing cost model
To simplify problem (9) under the approximated browsing cost model (10), we proposed

to define a decision function f (x; θ) that allows a classifier to reject the decision about each
individual class, independently on the other classes. We discuss first how such a decision function
can be defined.

Many ML classifiers output a real-valued score sk(x) ∈ R, k = 1, . . . ,N, representing the
“likelihood” that class k is relevant to x [16, 17] (note that the scores are not necessarily calibrated

7



probabilities, e.g., in the case of support vector machine classifiers). In the standard case without
a reject option, the decision function f (·) is usually implemented by setting a threshold tk for
each class, such that fk(x) = +1(−1), if sk(x) ≥ tk(< tk). The values of the N thresholds can
be set by maximising accuracy on validation data, using the scores of the trained classifier (see,
e.g., [16, 17, 18]). More complex thresholding strategies also exist, like the one of [19], which
implements a decision function (without a reject option) for ML classifiers that output estimates
of class posterior probabilities.

In these cases, the reliability of a decision fk(x) can be associated to the distance between the
score sk(x) and the corresponding threshold tk: intuitively, the higher |sk(x) − tk |, the higher the
reliability. A reject option can thus be implemented by using a pair of thresholds for each class,
tL
k ≤ tH

k , k = 1, . . . ,N (where ‘L’ and ‘H’ stand respectively for “lower” and “higher”), such that:

fk(x; θ) =


+1, if sk(x) ≥ tH

k
0, if tL

k ≤ sk(x) < tH
k

−1, if sk(x) < tL
k

(12)

where θ =
(
tL
1 , t

H
1 , . . . , t

L
N , t

H
N

)
. Note that this is the same kind of decision function with a reject

option proposed in [15] for binary SL problems. The difference with our problem lies in the
criterion that must be used for choosing threshold values, which is related to misclassification
probability in [15], and to different ML accuracy measures in our case.

Using decision function (12), problem (9) amounts to find the values of the 2N thresholds,
given the scores provided by a trained ML classifier on M validation samples. The constraint of
problem (9) can be rewritten as follows, taking into account cost function (10):

1
M

M∑
i=1

 N∑
k=1

I[ f R
k (xi; θ) = 0]

 ≤ Cmax

td
. (13)

In words, the average number of rejected decisions per sample must not exceed Cmax
td

. Denoting
the rejection rate (i.e., the fraction of rejected decisions out of the MN overall decisions, see
Sect. 4.1) with r, constraint (13) is equivalent to r ≤ rmax =

Cmax
Ntd

. To efficiently solve problem
(9), it is convenient to set a distinct constraint for each class, by requiring that the rejection rate
of class k, denoted as rk, does not exceed a given value rmax,k:

rk =
1
M

M∑
i=1

I[ f R
k (xi; θ) = 0] ≤ rmax,k, k = 1, . . . ,N . (14)

Choosing the values rmax,k such that
∑N

k=1 rmax,k =
Cmax

td
, one obtains a stronger constraint than

(13). Accordingly, to attain a rejection rate rmax, one may need to (empirically) choose values of
rmax,k such that

∑N
k=1 rmax,k >

Cmax
td

. Using constraint (14), problem (9) becomes:

maxθ Â(θ),
s.t. rk(θ) ≤ rmax,k, tL

k ≤ tH
k , k = 1, . . . ,N .

(15)

It is now easy to see that, when Â(θ) = F̂M
β (θ) (see Eq. 3), problem (C.2) can be decomposed

into N independent problems, each one involving the F̂β,k measure of a single class and the two
corresponding thresholds:

maxtL
k ,t

H
k

F̂β,k(tL
k , t

H
k ),

s.t. rk(tL
k , t

H
k ) ≤ rmax,k, tL

k ≤ tH
k .

(16)
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Algorithm 1 Optimisation algorithm for problem (C.2), when Â = F̂m
β .

Input: a set of labelled samples {(xi, yi)}Mi=1;
the scores sk(xi), k = 1, . . . ,N, i = 1, . . . ,M, provided by a ML classifier
Output: threshold values tL1 , t

H
1 , . . . , t

L
N , t

H
N

set tLk = tHk = mini=1,...,M sk(xi), k = 1, . . . ,N
repeat

updated ← False
for k = 1, . . . ,N do

(t∗Lk , t∗Hk )← arg max
(τL ,τH)∈T

F̂m
β (tL1 , t

H
1 , . . . , τ

L, τH, . . . , tLN , t
H
N ),

where T = {(τL, τH) ∈ R2 : τH > tHk , τ
H > τL, rk(τL, τH) ≤ rmax,k}

if F̂m
β (tL1 , t

H
1 , . . . , t

∗L
k , t∗Hk , . . . , tLN , t

H
N ) > F̂m

β (tL1 , t
H
1 , . . . , t

L
k , t

H
k , . . . , t

L
N , t

H
N )

then (tLk , t
H
k )← (t∗Lk , t∗Hk ), updated ← True end if

end for
until updated = True
return (tL1 , t

H
1 , . . . , t

L
N , t

H
N )

In Appendix C of the online supplementary material we show that the optimal solution of prob-
lem (16) can be found at O(M2) computational cost.

The case when Â(θ) = F̂m
β (θ) is more complex, since F̂m

β can not be decomposed over classes
(see Eq. C.1), and exhaustive search is impractical. Nevertheless, we derived two properties of
F̂m
β (θ) that allow the optimal solution of problem (C.2) to be found with low computational cost.

These properties extend the ones we derived in [18] for the standard F̂m
β measure without a reject

option. Their proof, and the derivation of the corresponding optimisation procedure, reported
here as Algorithm 1, can be found in the online Appendix C. Basically, Algorithm 1 iteratively
scans the N pairs of thresholds, and updates each of them to the value that locally maximises F̂m

β ,
by keeping all the other N − 1 threshold pairs at their current value. The algorithm stops when
no increase of F̂m

β is attained, after a whole scan of the N threshold pairs. In the online Appendix
D we show that the computational complexity of Algorithm 1 is upper bounded by O(N2M3). In
Sect. 5.2 we show that the actual computational cost can be much lower.

Algorithm 1 can also be exploited to approximate the optimal solution of learning problems
defined according to alternative kinds of application requirements mentioned in Sect. 3.2. To
this aim, one can solve problem (9) for different Cmax values, and then choose the solution that
provides the best accuracy-cost trade off according to the given application requirement.

4.3. Implementation under approximated tagging cost model

Under cost model (11), we proposed to define a decision function that allows the classifier to
reject either all the N decisions for an input sample, or none of them. A possible solution is to first
training any ML classifier without a reject option, and then defining a measure of classification
reliability R : X → R based on its crisp outputs g(x) ∈ {−1,+1}N (or soft outputs sk(x) ∈ R,
k = 1, . . . ,N). Assuming that a higher R(x) denotes a higher reliability, a rejection threshold t
can be set, such that the resulting decision function f (x; θ), with θ = {t}, is given by:

fk(x; t) =

{
gk(x), if R(x) ≥ t
0, otherwise k = 1, . . . ,N . (17)

9



Using cost function (11), the constraint of problem (9) becomes:

1
M

M∑
i=1

(I[R(xi) < t]) ≤
Cmax

ts
. (18)

In words, the fraction of rejected samples (rejection rate) must not exceed Cmax
ts

. Denoting these
two quantities respectively as r and rmax, problem (9) can be rewritten as:

maximiset Â(t),
s.t. r(t) ≤ rmax .

(19)

For any given R(·), the above problem could be solved analytically (depending on the accuracy
and reliability measures), or by a simple iterative search over the possible t values. Optimisation
problems corresponding to alternative application requirements mentioned in Sect. 3.2 can be
dealt with by solving problem (19) for different rmax values, similarly to Sect. 4.2.

Consider now how to define R(·). Note that different R(·) can lead to different solutions of
problem (19), being equal rmax. Accordingly, denoting with tR(·) the optimal solution of problem
(19) for a given R(·), the “best” reliability measure R∗(·) is given by R∗(·) = arg maxR(·) Â(tR(·)).
In words, R∗(·) is the reliability measure that allows one to obtain the highest accuracy on non-
rejected samples, for any given rmax. However, since the decision function that maximises F̂M

β

and F̂m
β can not be found analytically (see Sect. 3.2), the same holds for R∗(·), when Â = F̂M

β

or Â = F̂m
β . In particular, since F̂M

β and F̂m
β are not defined sample-wise, the contribution of a

given sample x can not be decoupled from the one of the other samples used to evaluate them.
Consequently, only heuristic criteria can be used to define R(·).

To find a reasonable R(·), we analysed the expressions of F̂M
β and F̂m

β (see Eqs. 4 and C.1),
to check whether some conditions on the TP, FN and FP values of a given set of samples exist,
under which these measures become additive over samples. Our idea was to derive the “best”
reliability measure R∗(·) under such conditions, and use it as a (suboptimal) reliability measure
for all samples. We were able to find such conditions for F̂m

β , and the corresponding reliability
measure turns out to be (see Appendix E of the online supplementary material):

R(x) =
T P({x}) + A

FP({x}) + β2FN({x}) + B
, (20)

where T P({x}) denotes the number of true positive decisions for x, and similarly for FP({x}) and
FN({x}), while A and B are arbitrary positive constants. We did not find any analogous condition
for F̂M

β , instead, but only for the F̂β,k measure of each class. The corresponding reliability mea-

sure has a similar expression as Eq. (20): T Pk({x})+Ak
FPk({x})+β2FNk({x})+Bk

, where T Pk({x}) ∈ {0, 1} indicates
whether x is a true positive (1) or not (0) for class k, and similarly for FPk({x}) and FNk({x}),
while Ak and Bk are arbitrary positive constants as before (see online Appendix E). This suggests
the following reliability measure for F̂M

β , which mimicks the macro-averaging criterion:

R(x) =
1
N

N∑
k=1

T Pk({x}) + Ak

FPk({x}) + β2FNk({x}) + Bk
. (21)

A possible estimate of T P({x}), FP({x}), and FN({x}) in Eq. (20), and of the corresponding values
in Eq. (21), is proposed in Sect. 5.3. The values of A and B, and of Ak and Bk, k = 1, . . . ,N, can
be set using validation data, as shown in the online Appendix E.

10



Dataset Samples Features Classes Class freq. Labels per sample
(training/testing) (min/max) (mean±std. dev.)

Reuters 7769 / 3019 18157 90 1E-4/0.37 1.23 ± 0.71
Ohsumed 12775 / 3750 17341 99 2E-4/0.25 1.49 ± 0.87
RCV1v2 3000 / 3000 47237 101 3E-4/0.46 3.19 ± 1.36
Tmc2007 21519 / 7077 30438 22 0.01/0.60 2.23 ± 1.07
Yeast 1500 / 917 104 14 0.06/0.75 4.23 ± 1.58
Scene 1211 / 1196 295 6 0.14/0.23 1.06 ± 0.25
Mediamill 30993 /12914 120 101 0.04/0.78 4.36 ± 2.30
Emotions 391 / 202 72 6 0.30/0.43 1.81 ± 0.67
Corel-5k 4500 / 500 499 374 2E-4/0.22 3.52 ± 0.66

Table 2: Characteristics of the data sets used in the experiments. For RCV1v2, average values over the five available
training sets are reported.

5. Experiments

In this section we give an experimental evaluation of the two implementations of ML classi-
fiers with a reject option developed in Sect. 4, in different annotation tasks: text, image, video,
music, and gene annotation. Recall that our implementations are tailored to the cost models of
image annotation with tagging and browsing. Accordingly, for data sets related to image an-
notation, our experiments refer to the case when the manual annotation techniques are tagging
or browsing. For data sets related to other annotation tasks (for which no cost model has been
proposed so far), our experiments can be considered representative of a scenario in which the
underlying annotation techniques are similar to tagging and browsing, in the sense that the cor-
responding cost models can be approximated by (or, possibly, are exactly equal to) the ones we
defined in Sect. 4.1.

5.1. Data sets and classifiers

We used nine benchmark ML data sets: Reuters 21578, the five subsets of Reuters RCV1v2
[20], the Heart Disease sub-tree of Ohsumed [21], and the Tmc2007 SIAM Text Mining Com-
petition data set (text categorisation); Scene and Corel-5k (image annotation); Yeast (gene anno-
tation); Mediamill (video annotation); Emotions (music annotation). All data sets are originally
subdivided into a training and a testing set, except for RCV1v2, for which five different pairs
of training and testing sets are available. For Corel-5k we used the feature vectors of [22];1 for
Scene, Yeast, Mediamill, Emotions and RCV1v2, we used the feature vectors of [17].2 For the
other data sets we used tf–idf features, and carried out stemming, stop-word removal, and a fur-
ther feature selection step using the information gain criterion [3]. The main characteristics of
the data sets are reported in Table 2.

We implemented ML classifiers using the well known binary relevance approach, i.e., by
independently training a binary classifier for each class [3, 5]. Although it disregards correlation
between classes, contrary to more complex approaches (e.g., [23]), it is widely used due to its
limited computational cost. We used two different statistical classifiers widely used in the ML
literature: support vector machines (SVM) [24], with linear kernel for data sets related to text
categorisation, and RBF kernel for the other data sets, and k-nearest neighbours (k-NN) [25]. For

1http://mulan.sourceforge.net/datasets.html
2http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html
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data sets related to text categorisation we also used the ad hoc version of the Naive Bayes (NB)
classifier of [26]. NB was not used for the other data sets, as well as k-NN for Mediamill and
Corel-5k, due to their poor performance. Selection of features and of classifier parameters was
carried out through a four-fold cross-validation (CV) on the original training set (the first training
set was used for RCV1v2).

Ten runs of the experiments were carried out: the original training set was split into ten dis-
joint subsets, and eight of them were randomly chosen as the training set in each run. The original
testing set was always used for performance evaluation. Since all the considered classifiers out-
put a real-valued score for each category, we implemented decision functions without a reject
option as described in Sect. 4.2, using a distinct threshold for each class. Such thresholds were
computed by maximising the accuracy measure, either the macro or micro F, through a five-fold
cross validation on the training set of each run (the optimisation algorithm of [18] was used for
micro F). Threshold values of decision functions with a reject option (either tL

1 , t
H
1 , . . . , t

L
N , t

H
N , or

t) were computed through a similar cross-validation procedure, using the algorithms presented
in the previous sections. In these experiments we considered the F1 measure (β = 1) only. Its
average values and standar deviation will be reported in the following, over the ten runs of the
experiments.

5.2. Results for the approximated browsing cost model

Figs. 1 and 2 (first and second columns) report the accuracy-rejection curves attained on the
nine data sets, for each considered base classifier, using the implementation of a reject option of
Sect. 4.2. Recall that, under cost model (10), manual annotation cost of rejections is proportional
to the fraction r of rejected decisions (rejection rate). Values of rmax between 0.0 and 0.3 were
considered, with steps of 0.05. The maximum rejection rate per class (see Sect. 4.2) was set to
rmax,k = rmax. The accuracy values for r = 0 are the ones of the standard ML classifiers without
a reject option.

Figs. 1 and 2 (first column) show that the use of a reject option always provided an increase
of F̂m

1 , for increasing rejection rates, which is the desired behaviour. For instance, using a SVM
classifier on Reuters, the average F̂m

1 increased from 0.87 to 0.97, by rejecting only 5% of deci-
sions. Assuming that cost model (10) is exact, the corresponding manual annotation cost equals
5% of the manual annotation cost of the whole Reuters data set. Similar relative increases of F̂m

1
can be observed for the k-NN and NB classifiers (which are less accurate than SVMs), and on the
other data sets, although at the expense of higher rejection rates (i.e., higher manual annotation
cost).

For some data sets, the rejection rate did not reach the maximum allowed value, rmax = 0.3.
In some cases (e.g., Reuters), this was due to the fact that no further increase of F̂m

1 was attained
by increasing r beyond a certain value. In other cases, this was due instead to the constraint
rmax,k = rmax, and to the fact that the number of rejected decisions turned out to be skewed across
classes. In particular, few decisions turned out to be rejected on rarer classes. In this case, to
attain a desired rejection rate rmax, one should either choose a different rmax,k for different classes,
taking into account class frequency, or choose values of rmax,k such that

∑N
k=1 rmax,k >

Cmax
td

, as
explained in Sect. 4.2.

Similar results were attained for the F̂M
1 measure (Figs. 1 and 2, second column). The main

difference is that, in data sets containing many rare classes (see Table 2), F̂M
1 exhibits a higher

variance. The reason is that label-wise macro-averaged measures are dominated by the accuracy
on rare classes, which exhibits a higher variance than the one of common classes. We also point
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out that the accuracy (especially the macro F) attained by the considered classifiers on Corel-5k
is rather poor: in this case, the improvements attained by a reject option may be not sufficient.

We finally evaluated the computational cost of Algorithm 1, when Â = F̂m
1 . According to

online Appendix D, Algorithm 1 executes up to N(M + 1) iterations of its repeat-until loop, and
evaluates F̂m

1 for up to N2(M + 1)2(M + 2)/2 different values of the 2N thresholds. Consider now
the Ohsumed data set, which contains the highest number of classes N and of training samples
M (see Table 2). Using the SVM classifier, on average 5.1 iterations of the repeat-until loop of
Algorithm 1 were carried out, while F̂m

1 was evaluated on average for 0.7N(M + 1)(M + 2) times:
both values are much lower than the corresponding upper bounds. Similar results were obtained
for the other classifiers and data sets. This provides evidence that Algorithm 1 scales very well
with respect to the number of classes and of samples.

5.3. Results for the approximated tagging cost model

In these experiments, we computed the reliability measures R(x) of Eqs. (20) and (21) by esti-
mating the corresponding terms, respectively T P({x}), FP({x}), FN({x}), and T Pk({x}), FPk({x}),
FNk({x}), from the score distributions evaluated on training samples. To this aim, for each class
k ∈ {1, . . . ,N} we computed 20-bins histograms of the corresponding TP, FP and FN distribu-
tions as functions of the scores sk(·). For instance, a testing sample x for which fk(x) = +1, can
be either a TP or a FP for class k. Accordingly, we set FNk({x}) = 0, and computed T Pk({x})
as P[Yk = +1|sk(x), fk(x) = +1], which was estimated as the bin value including sk(x) in the TP
histogram of class k, and similarly for FPk({x}).

Figs. 1 and 2 (third and fourth columns) show the accuracy-rejection curves attained by using
the implementation of a reject option of Sect. 4.3. Recall that, under cost model (11), manual an-
notation cost is proportional to the fraction r of rejected samples (rejection rate). As in Sect. 5.2,
we considered values of rmax in [0.0, 0.3], with steps of 0.05.

It can be seen that F̂m
1 always increased for increasing rejection rates, although the relative

improvement with respect to classifiers without a reject option (i.e., r = 0) was lower than in
case of rejection of decisions, being equal the rejection rate. Lower improvements can also be
observed for F̂M

1 , as well as a higher variance for some data sets, as in Sect. 5.2. Furthermore,
for Ohsumed and RCV1v2, F̂M

1 did not always increase for increasing rejection rates. This may
be due to the suboptimal reliability measure R(x) defined in Sect. 4.3. Defining a more effective
reliability measure remains thus an interesting open issue.

5.4. Comparison between the accuracy-cost and accuracy-rejection curves

We have seen that, in order to simplify learning problem (9), it could be necessary to approx-
imate the underlying cost model. In particular, if the cost function (10) or (11), used respectively
in learning problems (C.2) and (19), is an approximation of the actual cost function, then the at-
tained rejection rate is not proportional to the corresponding manual annotation cost of rejections.
In this case, the accuracy-rejection curve is only an approximation of the actual accuracy-cost
curve. In this section we experimentally evaluate how much the two curves can differ. To this
aim, one should know the exact cost model for the task at hand. However, in our experiments
the real cost models (Eq. 6) are known only for data sets related to image annotation, i.e., Scene
and Corel-5k. We will thus consider only these data sets in the following. The values of the
parameters of cost models (6), that have been empirically estimated in [1] using a real annotation
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Figure 1: Accuracy-rejection curves attained on the four data sets related to text categorisation (one row for each data set).
Each plot shows the curves of the three base classifiers (SVM, k-NN, NB), for the four combinations of the considered
cost models (browsing and tagging) and accuracy measures (micro and macro F). Average and standard deviation of the
testing set accuracy is reported, over the ten runs of the experiments.
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Figure 2: Accuracy-rejection curves attained on the five data sets not related to text categorisation (one row for each data
set). See caption of Fig. 1 for the details.
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Figure 3: Comparison between accuracy-rejection and accuracy-cost curves on Scene and Corel-5k, attained using a
SVM as base classifier, for all combination of accuracy measures (either micro or macro F) and image annotation
technique (either tagging or browsing). Average and standard deviation of testing set accuracy is reported, over the ten
runs of the experiments. The accuracy-rejection curves are the same as in Figs. 1-2.

tool, and expert users, are the following:3 ts = 5.6 s. and tf = 6.8 s. for tagging; tp = 1.4 s. and
tn = 0.2 s. for browsing. Fig. 3 shows the comparison between the accuracy-rejection curves
attained on Scene and Corel-5k (the same as in Figs. 1-2), and the corresponding accuracy-cost
curves. To ease the comparison, manual annotation cost is reported as the fraction of the cost
needed for manually annotating the whole data set, and is thus shown in the same scale as the
rejection rate.

Recall that the approximated browsing and tagging cost models of (10) and (11) have been
derived under the assumptions that tp ≈ tn, and ts >> Np(x)tf , respectively. Given the above
values of the four parameters, and the average number of labels per sample Np(x) (1.06 ± 0.25
for Scene and 3.52 ± 0.66 for Corel, see Table 2), the above assumptions turn out to be violated
by a rather large extent. Our approximations of the two cost models is thus rather inaccurate.
However, the actual accuracy-cost curves of Fig. 3 are very close to the corresponding accuracy-
rejection curves, in the case of tagging, and rather close in the case of browsing (the largest
difference between the accuracy values in the two curves is below 0.04). These results sug-
gest that even inaccurate approximations of the cost models may provide good estimates of the
accuracy-cost curve.

6. Discussion and contributions

In this work we provided two main contributions: (i) We developed a framework for clas-
sification with a reject option in ML problems. We defined in particular how to evaluate the

3 The values of these parameters can be affected by several factors, like the specific tool used [1]. For the purpose of
our experiments, we can consider the values of [1].
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trade-off between accuracy and manual annotation cost, and the general form of the classifier
learning problem. (ii) We developed two possible implementations of our framework for the
widely used micro and (label-wise) macro F measure, and the only two cost models formalised
so far for annotation tasks. Any ML classifier that outputs a real-valued score for each class can
be used in our implementations.

This paper extends our previous works on the same topic [10, 11, 12], in the following re-
spects. In [10] we extended the precision and recall measures to take into account the presence of
rejected decisions, and proposed the strategy of rejection of decisions. In [10, 12] we proposed
the strategy of rejection of samples. However, in these works we did not formalise the goal of a
reject option in terms of attaining a trade-off between classifier accuracy and manual annotation
cost. We focused on the trade-off between accuracy and rejection rate instead, without consid-
ering the underlying cost model. Moreover, only a suboptimal algorithm was devised in [10] to
solve the corresponding learning problem, when the micro F accuracy measure is used, and a
limited experimental evaluation was carried out. In [11] we considered a two-stage ML classifier
architecture, in which only the first-stage classifier is allowed to withhold decisions. Rejected
decisions are then handled by a more accurate and more costly second-stage classifier. In this
context, our goal was to improve the trade-off between accuracy and processing time, while no
manual annotation of rejections was involved.

Let us now discuss the issue of label dependence/correlation in ML problems, which has been
addressed recently by several authors (a thorough analysis of this issue can be found in [27]).
Taking into account label dependence (if any) can indeed improve the accuracy of ML classifiers.
Our framework does not set any limitation on the possibility of taking label correlation into
account: to this aim, a suitable choice of (i) the decision function and (ii) the cost function has to
be made, in learning problem (9).

(i) With regard to the decision function, if it is implemented using a two-stage approach, in
which a rejection criterion is defined on the outputs of any trained ML classifier (which is the
strategy adopted in this paper, as in most SL problems), then a straightforward solution exists:
one can use at the first stage any ML classifier (without a reject option) that takes correlation into
account. We also point out that in our implementations of Sect. 4, the parameters of decision
functions with a reject option (either the thresholds tL

1 , t
H
1 , . . . , t

L
N , t

H
N , or the reliability measure

R(·) and the corresponding threshold t) are computed not independently for each class, but tak-
ing into account all classes simultaneously, by directly maximising the considered performance
measure. This allows us to (implicitly) take into account label correlation.

(ii) Label correlation (as well as other factors, like class frequency) may affect also the cost
model, as pointed out in Sect. 2.2. Note however that the cost models of [1], that were used in this
paper, do not take into account label correlation, nor other factors like class frequency, although
they refer to real image annotation techniques, and have been validated in a realistic setting in [1].
Anyway, if these factors are taken into account in the definition of the cost function, they could
lead to the same issue discussed in Sect. 3.3, namely, a learning problem for which it is difficult
to develop an optimisation algorithm. In this case, the same solution proposed in Sect. 3.3 can be
adopted, i.e., choosing a suitable decision function, and (if necessary), approximating beforehand
the cost function.

We finally mention two future research directions. First, it is obviously interesting to develop
implementations of our framework for other ML accuracy measures, besides micro and (label-
wise) macro F, and for different cost models (if any) from the ones of image annotation with
tagging and browsing. Clearly, this requires the definition of formal cost models for annotation
tasks different from image annotation, which was out of the scope of this work. Second, the
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general form of the learning problem (9) for ML classifiers with a reject option was defined by
considering the empirical estimate of classification accuracy as the objective function. It would
be interesting to devise a proper regularisation term, to deal with overfitting in the case of small
training set size.
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Appendix A. Statistical formulation of the learning problem of multi-label classifiers with
a reject option

In Sect. 3.2 we defined a possible form of the learning problem of a multi-label classifier
with a reject option (Eq. 9), in which the micro- or (label-wise) macro-averaged F is used as
accuracy measure. Since these measures are defined as an empirical average of TP, FP and FN
counts over a given set of samples, the two optimisation problems have been defined in the same
terms. We show in the following that it is also possible to express these problems in terms of
the probability distribution P[X,Y], and that, however, it is not possible to analytically derive
the optimal solution f (x; θ), contrary to the case of single-label problems in the minimum risk
framework.

Note first that maximising the macro- and micro-averaged F measure amounts to minimising
the fractions in Eq. (4) and (5), respectively. Dividing the numerator and denominator by the
number M of samples over which T Pk, FPk and FNk are computed, these three terms can be
seen as empirical estimates of the joint probability P[Yk, fk(X)]. In particular, T Pk/M is the
estimate of P[Yk = +1, fk(X) = +1], and similarly for FPk/M and FNk/M. It follows that
optimisation problem (11) can be considered as the empirical approximation of the following
one:

max
f (x)

∑N
k=1 P[Yk = +1, fk(X) = +1]∑N

k=1
[
P[Yk = −1, fk(X) = +1] + β2P[Yk = +1, fk(X) = −1]

] , (A.1)

s.t. E[C(Y, f (X))] ≤ Cmax . (A.2)

The objective function (A.1) can also be rewritten in terms of class posteriors:∑N
k=1

∫
x∈Xk

P[Yk = +1 | x]P[x]dx∑N
k=1

[∫
x∈Xk

P[Yk = −1 | x]P[x]dx + β2
∫

x<Xk ,X
0
k
P[Yk = +1 | x]P[x]dx

] , (A.3)

where Xk and X0
k denote respectively the set of samples labelled as belonging to class k, {x ∈ X :

fk(x) = +1}, and the ones whose decision is rejected, {x ∈ X : fk(x) = 0}. Defining fk(x) amounts
therefore to defineXk andX0

k (note that in a multi-label classifierX1, . . . ,XN can be overlapping).
It is now easy to see that the optimal f (x) (i.e., the one that maximises Eq. (A.3) under constraint
(A.2)), can not be found analytically. Indeed, even if constraint (A.2) is disregarded, for any
fixed x, the decision f (x) that maximises the numerator of expression (A.3) can be different
than the one that minimises the denominator. The numerator (which corresponds to the TP
probability) is trivially maximised by fk(x) = +1 (i.e., labelling all samples as belonging to
class k). The denominator is minimised instead by labelling x as (not) belonging to class k, if
P[Yk = −1 | x] < (≥)β2P[Yk = +1 | x]. In the latter case, the optimal decision fk(x) does not
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depend only on the posterior of the considered x (as in Bayes and Chow’s rules, for single-label
problems), but also on all the other points in feature space, through the integrals in both the
numerator and denominator, and it is thus not possible to find it in closed form.

Appendix B. Auxiliary equivalences.

We report here three equivalences that will be used in the next sections.

Equivalence B.1.

Given four real values A, B, ∆A and ∆B, with B > 0, ∆B < 0, and B + ∆B > 0, the following
equivalence holds:

A + ∆A
B + ∆B

<
A
B

⇔
A
B
<

∆A
∆B

. (B.1)

Proof. Taking into account the constraints on B,∆B and B + ∆B, from the first inequality of
(B.1) one obtains:

B(A + ∆A) < A(B + ∆B),

AB + ∆A × B < AB + A × ∆B,

∆A × B < A × ∆B,

A
B
<

∆A
∆B

.

Equivalences B.2 and B.3.

Given four real values A, B, ∆A and ∆B, with B > 0, ∆B > 0, the following equivalences
hold:

∆A
∆B

<
A + ∆A
B + ∆B

⇔
A + ∆A
B + ∆B

<
A
B
, (B.2)

∆A
∆B

<
A
B

⇔
∆A
∆B

<
A + ∆A
B + ∆B

<
A
B
. (B.3)

Proof. We indirectly prove (B.2) and (B.3) by showing that the following equivalences (B.4)
hold, under the same constraints given above. This implies that equivalences (B.2) and (B.3)
hold, as they are implied by (B.4). Note indeed that the two inequalities of (B.2) coincide with
the first and third inequality of (B.4), while the ones of (B.3) coincide with the second inequality
of (B.4), and with the union of the first and third inequality of (B.4).

∆A
∆B

<
A + ∆A
B + ∆B

⇔
∆A
∆B

<
A
B

⇔
A + ∆A
B + ∆B

<
A
B
. (B.4)

Taking into account the constraints on B and ∆B, from the second inequality of (B.4) one
obtains:

∆A × B < A × ∆B. (B.5)

Adding (∆A × ∆B) to both sides of (B.5), one obtains:

∆A × B + ∆A × ∆B < ∆A × ∆B + A × ∆B,

∆A(B + ∆B) < (A + ∆A)∆B,
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which corresponds to the first inequality of (B.4).
Adding (A × B) to both sides of (B.5), one obtains instead:

∆A × B + A × B < A × B + A × ∆B,

B(A + ∆A) < A(B + ∆B),

which corresponds to the last inequality of (B.4).

Appendix C. Rejection of decisions: optimisation of the micro-averaged F measure

In this section we prove two properties of the micro-averaged F measure, that allow us to
attain the optimal solution of the corresponding learning problem (15), with low computational
complexity. For ease of reading, we report here the definition of F̂m

β :

F̂m
β =

1 + β2

1/ p̂m + β2/r̂m = (1 + β2)/
(1 + β2) +

∑N
k=1(FPk + β2FNk)∑N

k=1 T Pk

 , (C.1)

and learning problem (15) when Â(θ) = F̂m
β (θ):

max
θ

F̂m
β (θ) ,

s.t. rk(tL
k , t

H
k ) ≤ rmax,k, tL

k ≤ tH
k , k = 1, . . . ,N ,

(C.2)

where θ =
{
tL
1 , t

H
1 , . . . , t

L
N , t

H
N

}
. To simplify the notation, we will denote each threshold pair (tH

k , t
L
k ),

such that tL
k ≤ tH

k , as Tk.

Property 1. Consider a given set of threshold pairs T1, . . . ,TN , that satisfy the following con-
straint:

rk(Tk) < rmax, k = 1, . . . ,N . (C.3)

If for each k = 1, . . . ,N no pair T ′k , Tk exists, such that

F̂m
β (T1, . . . ,Tk−1,T ′k,Tk+1, . . . ,TN) > F̂m

β (T1, . . . ,TN) ,
rk(T ′k) < rmax ,

(C.4)

then T1, . . . ,TN is a solution of problem (C.2).4

Property 2. Consider any set of threshold pairs T1, . . . ,TN , such that for some j:

T j = arg maxτL
j ,τ

H
j

F̂m
β (T1, . . . ,T j−1, τ

L
j , τ

H
j ,T j+1, . . . ,TN) ,

rk(Tk) < rmax, k = 1, . . . ,N .
(C.5)

Assume that another set of N − 1 threshold values T ′1, . . . ,T
′
j−1,T

′
j+1, . . . ,T

′
N exists, such that:

F̂m
β (T ′1, . . . ,T

′
j−1,T j,T ′j+1, . . . ,T

′
N) > F̂m

β (T1, . . . ,TN) ,
rk(T ′k) < rmax, k , j .

(C.6)

The above assumptions imply that, for any T ′j such that t′Hj < tH
j , the following inequality is true:

F̂m
β (T ′1, . . . ,T

′
k−1,T

′
k,T

′
k+1, . . . ,T

′
N) < F̂m

β (T ′1, . . . ,T
′
k−1,Tk,T ′k+1, . . . ,T

′
N) .

4Note that infinite equivalent solutions can exist, since thresholds are real values, while there are at most M different
score values sk(xi).
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The above properties imply that, if any given set of threshold values T1, . . . ,TN does not
provide the absolute maximum of F̂m

β under constraint C.3, then it is always possible to increase
F̂m
β without violating the above constraint, by changing the values of one only pair of thresholds

tL
j , t

H
j , for some j (note that more than one pair can exist). Moreover, such improvement can be

attained only by values of tH
j higher than the current one. This finally implies that Algorithm 1

provides the optimal solution of problem C.2. Indeed, F̂m
β is a piecewise constant function of

T1, . . . ,TN , which attains a finite number of distinct values, and Algorithm 1 increases its value
at each iteration, by changing a single pair of threshold values, until no such improvement is
possible.

The proof of the above properties is given in the following. We then derive the computational
complexity of Algorithm 1.

Proof of Property 1

Consider any set of threshold pairs (T1, . . . ,TN), and another set obtained by changing the
values of any m ≤ N pairs of such threshold values. Without losing generality, we assume that
the first m pairs are changed, and thus we denote the second set as (T ′1, . . . ,T

′
m,Tm+1, . . . ,TN).

Here we prove that the following implication holds:

if F̂m
β (T1, . . . ,TN) > F̂m

β (T1, . . . ,Tk−1,T ′k,Tk+1, . . . ,TN)
for each k ∈ {1, . . . ,m},

then F̂m
β (T1, . . . ,TN) > F̂m

β (T ′1, . . . ,T
′
m,Tm+1, . . . ,TN).

(C.7)

Clearly, this implies that Property 1 is true.
We first rewrite the inequalities in (C.7) by exploiting the expression of the micro-averaged F

measure given in Eq. (C.1). To simplify the notation, let us denote the values
∑N

k=1(FPk +β2FNk)
and

∑N
k=1 T Pk, corresponding to the thresholds (T1, . . . ,TN), respectively as E and T P. We also

denote as E + ∆Ek and T P + ∆T Pk the corresponding values attained by changing only Tk, for a
given k ∈ {1, . . . ,m} (we remind the reader that FPk, FNk and T Pk depend only on the value of
the k-th threshold pair). Obviously, ∆Ek = ∆T Pk = 0, for any k > m.

From Eq. (C.1) it is easy to see that the first inequality in (C.7) is equivalent to E
T P < E+∆Ek

T P+∆T Pk
,

and the latter is equivalent to E
T P <

E+
∑m

k=1 ∆Ek

T P+
∑m

k=1 ∆T Pk
. Accordingly, implication (C.7) can be rewritten

as:

if
E

T P
<

E + ∆Ek

T P + ∆T Pk
, for each k ∈ {1, . . . ,m},

then
E

T P
<

E +
∑m

k=1 ∆Ek

T P +
∑m

k=1 ∆T Pk
.

(C.8)

If m = 1, (C.8) is trivially true. If m > 1, we prove it by induction. First, we prove that it
holds when m = 2. Then we prove that, if (C.8) holds for any m = m∗ ∈ {2, . . . ,N − 1}, then it
holds also for m = m∗ + 1.

Base case: m = 2. We prove this case by contradiction. Assume that the consequent of (C.8)
is false, namely, a set of threshold pairs (T ′1,T

′
2,T3, . . . ,TN) exists, such that Fm

β (T1, . . . ,TN) <
Fm
β (T ′1,T

′
2,T3, . . . ,TN). Using the notation of (C.8), this inequality can be rewritten as:

E
T P

>
E + ∆E1 + ∆E2

T P + ∆T P1 + ∆T P2
.
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Taking into account the antecedent of (C.8), we obtain:

E + ∆E1 + ∆E2

T P + ∆T P1 + ∆T P2
<

E
T P

<
E + ∆Ek

T P + ∆T Pk
, k = 1, 2. (C.9)

Let us now consider two different cases: ∆T P2 < 0, and ∆T P2 > 0 (the case ∆T P2 = 0 is
trivial), with no constraint on ∆T P1. (Note that the proof can be made also by considering the
cases ∆T P1 < 0 and ∆T P1 > 0, with no constraint on ∆T P2.)

If ∆T P2 < 0, applying (B.1) to the first and third term of (C.9),5 we obtain:

E + ∆E1

T P + ∆T P1
<

∆E2

∆T P2
.

From the above expression and the second inequality of (C.9), we obtain:

E
T P

<
∆E2

∆T P2
.

Finally, applying (B.1) to the above inequality,6 we obtain:

E + ∆E2

T P + ∆T P2
<

E
T P

,

which contradicts the second inequality of (C.9) for k = 2.
The proof for the case ∆T P2 > 0 is similar. It can be obtained by applying (B.2) to the first

and third term of Eq. (C.9),7 then using the first of the inequalities (C.9), and finally applying
(B.3),8 which leads to a contradiction.

Inductive step. Assuming that (C.8) holds for each m ≤ m∗ < N, we have to prove that it
holds also for m = m∗ + 1, namely, that the following implication holds:

if
E

T P
<

E + ∆Ek

T P + ∆T Pk
, for each k ∈ {1, . . . ,m∗ + 1},

then
E

T P
<

E +
∑m∗+1

k=1 ∆Ek

T P +
∑m∗+1

k=1 ∆T Pk
.

(C.10)

By the above assumption, we know that:

E
T P

<
E +

∑m∗
k=1 ∆Ek

T P +
∑m∗

k=1 ∆T Pk
. (C.11)

Note now that the consequent of (C.10) can be rewritten as:

E
T P

<
E +

∑m∗
k=1 ∆Ek + ∆Em∗+1

T P +
∑m∗

k=1 ∆T Pk + ∆T Pm∗+1
. (C.12)

It is now easy to see that (C.12) is implied by (C.11) and by the antecedent of (C.10) for k =

m∗ + 1, which in turn implies that (C.10) is true. The proof coincides indeed with the one of the
basis case above, with a simple change of notation. This completes the proof of Property 1.

5 with A = E + ∆E1, B = T P + ∆T P1, ∆A = ∆E2 and ∆B = ∆T P2 < 0
6with A = E, B = T P, ∆A = ∆E2, ∆B = ∆T P2 < 0
7 with A = E + ∆E1, B = T P + ∆T P1, ∆A = ∆E2 and ∆B = ∆T P2 > 0
8 with A = E, B = T P, ∆A = ∆E2, ∆B = ∆T P2 > 0
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Proof of Property. 2

We use the notation introduced in the proof of Property 1. We denote with Ek and T Pk the
values corresponding to the threshold pair Tk, and with Ek + ∆Ek and T Pk + ∆T Pk the values
corresponding to T ′k , Tk. Using this notation, the first assumption of Property 2 can be rewritten
as:

for each ∆E j,∆T P j such that r j(T ′j) < rmax,
E

T P <
E+∆E j

T P+∆T P j
.

(C.13)

The second assumption can be rewritten as:

there exist ∆Ek, ∆T Pk, k , j, such that :
rk(T ′k) < rmax, and E

T P >
E+

∑
k, j ∆Ek

T P+
∑

k, j ∆T Pk
.

(C.14)

Under the above assumptions, Property 2 states that:

for each ∆E j,∆T P j such that t′Hj < tH
j and rk(T ′k) < rmax,

E+
∑

k, j ∆Ek

T P+
∑

k, j ∆T Pk
<

E+
∑

k, j ∆Ek+∆E j

T P+
∑

k, j ∆T Pk+∆T P j
.

(C.15)

The condition t′Hj < tH
j implies that ∆T P j ≥ 0. If ∆T P j = 0, it follows that ∆E j < 0, and

(C.15) is trivially true. If ∆T P j > 0, applying (B.2) to inequality (C.13),9 we obtain:

E + ∆E j

T P + ∆T P j
<

∆E j

∆T P j
. (C.16)

Combining inequalities (C.13), (C.14) and (C.16), we obtain:

E +
∑

k, j ∆Ek

T P +
∑

k, j ∆T Pk
<

∆E j

∆T P j
.

Applying (B.3),10 we finally obtain (C.15), which completes the proof.

Appendix D. Computational complexity of Algorithm 1

The macro- and micro-averaged F measure, evaluated on a given data set of M samples as a
function of the N pairs of thresholds tL

1 , t
H
1 , . . . , t

L
N , t

H
N , is a picewise constant function that exhibits

discontinuities for tL/H
k = sk(xi), k = 1, . . . ,N, i = 1, . . . , n. It follows that its maximum with

respect to a single pair (tL
k , t

H
k ), with tL

k ≤ tH
k (for any fixed value of the remaining N−1 pairs), can

be found by an exahustive search over at most (M + 1)(M + 2)/2 values of such pair. This upper
bound is attained when the classifier scores on the M samples for the k-th class are all distinct.

Let us denote with sk(x(1)), . . . , sk(x(M)) the k-th class scores of the M samples, sorted in
increasing order, where sk(x(i)) ≤ sk(x(i+1)), i = 1, . . . ,M − 1. An upper bound on the computa-
tional complexity of Algorithm 1, in terms of the number of threshold pairs that it evaluates, can
be obtained by considering the following conditions:

9with A = E, B = T P, ∆A = ∆E j and ∆B = ∆T P j (we remind the reader that ∆T P j > 0).
10 with A = E +

∑
k, j ∆Ek , B = T P +

∑
k, j ∆T Pk , ∆E j and ∆B = ∆T P j
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1. For each class k, the scores sk(xi), i = 1, . . . ,M, are all different.
2. In each repeat-until loop, only one threshold pair is updated.
3. When any threshold pair (tL

k , t
H
k ) is updated, if the previous value of tH

k is in the interval[
sk(x(i)), sk(x(i+1))

)
, for any i < M, then its new value is in

[
sk(x(i+1)), sk(x(i+2))

)
.

4. The global maximum of F̂m
β is attained when tH

k ≥ sk(x(M)), k = 1, . . . ,N.

This implies that the repeat-until loop is executed for N(M + 1) times. An upper bound for
the number of threshold pairs to be evaluated in each loop is N(M + 1)(M + 2)/2. The latter
value is obtained by disregarding the fact that only higher values of each tH

k are considered, with
respect to the current one, and that the only values of the corresponding tL

k that are considered
are the ones that do not violate the constraint on the rejection rate on the k-th class. It follows
that the overall number of threshold pairs that are evaluated by Algorithm 1 is upper bounded by
the product of the two previous quantities:

N(M + 1) × N
(M + 1)(M + 2)

2
= O(N2M3) .

Note that an exhaustive search requires to evaluate all possible combinations of the (M+1)(M+2)
2

values of each of the N threshold pairs, which corresponds to a computational complexity of
O(M2N).

Appendix E. Rejection of samples: derivation of reliability measures

As explained in Sect. 4.3, the “best” reliability measure R∗(·) is the one that allows one to
obtain the highest accuracy F̂(t) on non-rejected samples, for any given rejection rate r(t). More
precisely, let D be a given set of samples, DR ⊂ D the subset of rejected samples for given R(·)
and t, and r(t) =

|DR |

|D| the corresponding rejection rate. The optimal R∗(·) is the one that allows
one to reject the subset of samples D∗R such that F̂ computed on D − D∗R is maximum, among
all subsets of a fixed size |D∗R|. However, due to the form of the F̂ measure (see Eqs. 4 and
5), we show that the impact of the classification of a single sample on F̂ depends also on the
classification of all the other samples over which F̂ is computed. To this aim, let us consider
the micro-averaged measure F̂ = F̂m

β . Maximising it amounts to minimise the fraction in the
denominator of expression (5). The corresponding D∗R is given by:

D∗R = arg max
DR⊂D,

|DR |=r(t)×|D|

T P(D) − T P(DR)
[FP(D) + β2FN(D)] − [FP(DR) + β2FN(DR)]

, (E.1)

where we denoted with T P(·) the term
∑N

k=1 T Pk, computed on a given set of samples, and
similarly for FP(·) and FN(·). Expression (E.1) implies that the contribution to F̂m

β of any subset
DR ⊂ D, and in particular of any single sample DR = {x}, is not independent on the remaining
samples D − DR. It is easy to show that the same result above holds for the macro-averaged F
measure (Eq. 5). Therefore, the optimal D∗R can not be obtained using a reliability measure that
takes into account a single sample x, even if the exact values of T P({x}), FP({x}) and FN({x}) in
Eq. (E.1), were known.

Nevertheless, in the following we show that, under some conditions on the terms of (E.1),
the contribution of any individual sample x on F̂m

β is additive, and thus the reliability of its
classification can be evaluated independently on the other samples.
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Proposition 1. Given a set of samples D, under some conditions on the values of T P({x}),
FP({x}) and FN({x}) of its samples, the sample D∗R = {x∗} in (E.1) can be found as follows:

x∗ = arg min
x∈D

T P({x}) + A
FP({x}) + β2FN({x}) + B

, (E.2)

where A and B are arbitrary positive constants, which only depend on x.

Proof. We first rewrite the left-hand side of Eq. (E.1), for DR = {x}, as follows:

(T P(D) + A) − (A + T P({x}))
(FP(D) + β2FN(D) + B) − (B + FP({x}) + β2FN({x}))

, (E.3)

where A and B are arbitrary positive constants. Let us then simplify the notation, by denoting the
term T P(·) + A as T (·), and the term FP(·) +β2FN(·) + B as E(·). It is easy to see that minimising
expression (E.3) amounts to find the sample x∗ such that:

T (D) − T ({x∗})
E(D) − E({x∗})

<
T (D) − T ({x})
E(D) − E({x})

, for any x ∈ D, x , x∗. (E.4)

Proposition 1 states that, under some conditions on E(D), E({x}), T (D) and T ({x}), the sample
x∗ in expression (E.4) is the one that satisfies the following condition:

T (x∗)
E({x∗})

<
E({x})
T ({x})

, for any x ∈ D, x , x∗. (E.5)

Our proof is based on considering all possible pairwise relationships between T (D)−T ({x})
E(D)−E({x}) and

T ({x∗})
E({x∗}) , and between E({x∗}) and E({x}) (for i , j), and in deriving the corresponding relationships
between the conditions Eq. (E.4) and Eq. (E.5).

There are five different possible relationships, listed in the following:
T (D) − T ({z})
E(D) − E({z})

<
T ({x∗})
E({x∗})

, with either z = x∗ or z = x

E({x∗}) > E({x})
(E.6)


T (D) − T ({z})
E(D) − E({z})

>
T ({x∗})
E({x∗})

, with either z = x∗ or z = x

E({x∗}) < E({x})
(E.7)


T (D) − T ({z})
E(D) − E({z})

<
T ({x∗})
E({x∗})

, with either z = x∗ or z = x

E({x∗}) < E({x})
(E.8)


T (D) − T ({z})
E(D) − E({z})

>
T ({x∗})
E({x∗})

, with either z = x∗ or z = x

E({x∗}) > E({x})
(E.9)

T (D) − T ({x∗})
E(D) − E({x∗})

<
T ({x∗})
E({x∗})

<
T (D) − T ({x})
E(D) − E({x})

(E.10)
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We now prove the following propositions, which imply that proposition 1 is true. To this aim,
we will exploit some equivalences whose proof is reported in Appendix B. We point out that
to use these equivalences we must have T ({x}) > 0 and E({x}) > 0, which is guaranteed by the
presence of the two positive constants A and B.

Property 1: Under conditions (E.6) or conditions (E.7), minimising Eq. (E.2) also minimises
Eq. (E.1).

Property 2: Under conditions (E.8) or conditions (E.9), minimising Eq. (E.1) also minimises
Eq. (E.2). It follows that, in some cases (but not always), minimising Eq. (E.2) also min-
imises Eq. (E.1).

Property 3: Under conditions (E.10), minimising Eq. (E.2) also minimises Eq. (E.1).

Proof of Property 1. We prove Property 1 only under conditions (E.6). The proof under condi-
tions (E.7) is similar. By using Eq. (E.4) and Eq. (E.5), we can rewrite Property 1 as:

Eq. (E.5) ∧ Eq. (E.6)⇒ Eq. (E.4) . (E.11)

From Eq. (E.6) we have that E({x∗}) > E({x}), therefore we can apply equivalence (B.1) (with
A = T ({x∗}), B = E({x∗}), ∆A = −T ({x}) and ∆B = −E({x})) to Eq. (E.5), to obtain:

T ({x})
E({x})

<
T ({x∗})
E({x∗})

⇒
T ({x∗})
E({x∗})

<
T ({x∗}) − T ({x})
E({x∗}) − E({x})

.

Therefore from Eq. (E.6) we obtain:

T (D) − T ({x∗})
E(D) − E({x∗})

<
T ({x∗}) − T ({x})
E({x∗}) − E({x})

.

Exploiting equivalence (B.3) (with ∆A = T (D) − T ({x∗}), ∆B = E(D) − E({x∗}), A = T ({x∗}) −
T ({x}) and B = E({x∗}) − E({x})), we obtain Eq. (E.4):

T (D) − T ({x∗})
E(D) − E({x∗})

<
T ({x∗}) − T ({x})
E({x∗}) − E({x})

⇒
T (D) − T ({x∗})
E(D) − E({x∗})

<
T (D) − T ({x})
E(D) − E({x})

.

Proof of Property 2. We prove Property 2 only under conditions (E.8). The proof under condi-
tions Eq. (E.9) is similar. Using Eq. (E.4) and Eq. (E.5), we can rewrite Property 2 as:

Eq. (E.4) ∧ Eq. (E.8)⇒ Eq. (E.5) . (E.12)

Eq. (E.8) implies E({x∗}) < E({x}), therefore we can apply equivalence (B.1) (with A =

T (D) − T ({x∗}), B = E(D) − E({x∗}), ∆A = T ({x∗}) − T ({x}) and ∆B = E({x∗}) − E({x})) to
Eq. (E.4), to obtain:

T (D) − T ({x∗})
E(D) − E({x∗})

<
T (D) − T ({x})
E(D) − E({x})

⇒
T ({x}) − T ({x∗})
E({x}) − E({x∗})

<
T (D) − T ({x∗})
E(D) − E({x∗})

.

Therefore, from Eq. (E.8) we obtain:

T ({x}) − T ({x∗})
E({x}) − E({x∗})

<
T (D) − T ({x∗})
E(D) − E({x∗})

<
T ({x∗})
E({x∗})

.
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Applying equivalence (B.3) (with A = T ({x∗}), B = E({x∗}), ∆A = T ({x}) − T ({x∗}) and ∆B =

E({x}) − E({x∗}) ) we obtain Eq. (E.5):

T ({x}) − T ({x∗})
E({x}) − E({x∗})

<
T ({x∗})
E({x∗})

⇒
T ({x})
E({x})

<
T ({x∗})
E({x∗})

.

Proof of Property 3. Using Eq. (E.4) and Eq. (E.5), we can rewrite Property 3 as:

Eq. (E.5) ∧ Eq. (E.10)⇔ Eq. (E.4) ∧ Eq. (E.10) . (E.13)

Exploiting equivalence (B.3), from Eq. (E.10) we obtain:

T (D) − T ({x∗})
E(D) − E({x∗})

<
T ({x∗})
E({x∗})

⇔
T (D)
E(D)

<
T ({x∗})
E({x∗})

.

Therefore, from Eq. (E.10) we obtain:

T (D)
E(D)

<
T ({x∗})
E({x∗})

<
T (D) − T ({x})
E(D) − E({x})

.

Exploiting equivalence (B.1) (with A = T (D), B = E(D), ∆A = −T ({x}) and ∆B = −E({x}), ad
replacing “<” with “>”), we obtain:

T (D)
E(D)

<
T (D) − T ({x})
E(D) − E({x})

⇔
T ({x})
E({x})

<
T (D)
E(D)

.

Merging the two expressions above, we obtain Eq. (E.5):

T ({x})
E({x})

<
T (D)
E(D)

<
T ({x∗})
E({x∗})

.

This completes the proof of Proposition 1.
A similar proof can be given for the optimality of the reliability measure (24) for the F̂M

β,k
measure of any individual class k.

Finally, we show that also the values of A and B, and the ones of Ak and Bk, k = 1, . . . ,N,
can be set using validation data. To this aim, it is convenient to adopt an opposite point of view
with respect to (E.1), considering x∗ as the worst sample that can be added to a data set D′ of
non-rejected samples. This leads to:

x∗ = arg min
x

T P(D′) + T P({x})
[FP(D′) + β2FN(D′)] + [FP({x}) + β2FN({x})]

. (E.14)

Comparing Eq. (E.14) with Eq. (E.2), it is easy to see that a reasonable choice is to set the above
constants as approximations of TP, FP and FN on the unknown set D′, using a validation set V:

A = T P(V), B = FP(V) + β2FN(V) , (E.15)
Ak = T Pk(V), Bk = FPk(V) + β2FNk(V) . (E.16)
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