Digital Investigation of PDF Files:
Unveiling Traces of Embedded Malware

Davide Maiorca, Member, IEEE, Battista Biggio, Senior Member, IEEE,

Abstract—Over the last decade, malicious software (or malware, for short) has shown an increasing sophistication and proliferation,
fueled by a flourishing underground economy, in response to the increasing complexity of modern defense mechanisms. PDF
documents are among the major vectors used to convey malware, thanks to the flexibility of their structure and the ability of embedding
different kinds of content, ranging from images to JavaScript code. Despite the numerous efforts made by the research and industrial
communities, PDF malware is still one of the major threats on the cyber-security landscape. In this paper, we provide an overview of the
current attack techniques used to convey PDF malware, and discuss state-of-the-art PDF malware analysis tools that provide valuable
support to digital forensic investigations. We finally discuss limitations and open issues of the current defense mechanisms, and sketch

some interesting future research directions.

1 INTRODUCTION

In recent years, the number of services available on
the Internet, along with the number of interconnected
users, has rapidly increased. This has revolutionized
the way society is organized, facilitating the way we
communicate, work, and perform our daily activities.
However, this rapid expansion of the Internet has also
exhibited severe drawbacks. The first is related to the
fact that we are essentially dipped into a liquid state in
which a vast amount of our personal data — a wvaluable
asset both for companies and for cybercriminals — is
provided in a seamless manner to third-party services,
without guarantees on how it will be managed and
stored. Second, the proliferation of web services has also
drastically increased the number of vulnerable appli-
cations exploitable by cybercriminals. Cybercrime has
become a very profitable activity, and cybercriminals
re-invest profits made on the black markets or other
illicit activities (e.g., violated online bank accounts) to
improve their illegal business. The fact that attackers are
economically motivated and constantly aim to mislead
current cybersecurity systems, is the main reason behind
the constant evolution, sophistication and variability of
malware and other scams perpetuated over the Internet.

Portable Document Format (PDF) documents have
been among the major vectors used to convey malware,
thanks to the flexibility of their structure and the ability
of embedding different kinds of content, ranging from
JavaScript to ActionScript code. Although Microsoft Of-
fice macro-based attacks are now playing a major role

o Preprint of the work accepted for publication in the IEEE Security &
Privacy magazine, Special Issue on Digital Forensics, Nov. - Dec. 2017,
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7854112

o The authors are with the Department of Electrical and Electronic Engi-
neering, University of Cagliari, Piazza d’Armi, 09123 Cagliari, Italy.

o Davide Maiorca: e-mail davide.maiorca@diee.unica.it

e Battista Biggio: e-mail battista.biggio@diee.unica.it

in the diffusion of malware, critical vulnerabilities are
still being publicly disclosed for Adobe Reader (see, e.g.,
CVE-2017-3010,CVE-2016-1009). PDF malware thus
remains a potential, serious threat for Internet users, as
also witnessed by recent research work [13], [14].

Malware embedding in PDF files can be largely au-
tomatized with state-of-the-art tools like Metasploit. PDF
files also support embedding of obfuscated or encrypted
content, which can be leveraged by an attacker to in-
crease the probability of evading anti-malware mecha-
nisms. Another reason behind the proliferation of ma-
licious PDF files is that, normally, unexperienced users
receiving such files (e.g., as attachments to scam emails)
tend to trust and execute them, as they are not commonly
known as potential malware vectors.

Due to the inherent flexibility and complexity of the
format, and of the variability of the attacks, effectively
analyzing and recognizing malicious PDF files has be-
come a compelling challenge, especially from the view-
point of a forensic analyst. For these reasons, machine
learning has been exploited as a key component in the
development of more recent PDF malware detection sys-
tems, either to prevent infection of a targeted machine, or
to help the analyst during a forensic investigation (after
the incident) [1]-[8]. Nevertheless, as machine learning
has not been originally designed to operate against intel-
ligent attackers, it is also known that it exposes specific
vulnerabilities that can be exploited to evade detection.

In this paper, we first provide an overview of the PDF
file format and of the current attacks used to convey PDF
malware, through concrete attack examples collected in
the wild. We describe how to perform a forensic analysis
of a PDF file to find evidence of embedded malware,
using some state-of-the-art software tools. We then dis-
cuss some of the most recent PDF malware detection
tools based on machine learning, which can be used to
support digital forensic analyses, identifying suspicious
files before digging deep into a more detailed manual

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7854112

investigation. We discuss their limitations and related
open issues, especially in terms of the exploitation of
their vulnerabilities to potentially mislead subsequent
forensic analyses. We finally suggest guidelines for im-
proving the performance of such systems under attack,
and sketch promising research directions.

2 PDF FiLE FORMAT

PDF is one of the most used format to render documents.
Due to the support for third-party technologies such
as JavaScript and ActionScript, PDF is widely used not
only for visualizing text but also for rendering images,
compiling forms, and showing animations. The typical
structure of a PDF file is depicted in Figure |1} It consists
of four parts: (i) the header, containing information about
the PDF file version; (i4) the body, containing a number
of objects that define the operations performed by the
file and the embedded data (e.g., text, images, scripting
code); (¢ii) the cross-reference (x-ref) table, listing the offset
of each object inside the file to be rendered by the reader;
and (iv) the trailer, namely, a special object that describes,
among others, the first object to be rendered by the
reader, identified by the name object /Root.

Technically, A PDF file can be seen as a graph of
objects that instructs the reader about the operations it
has to do to visualize the file content to the user. The
PDF file format supports eight types of objects:

e boolean, i.e., a variable which can be True or False;

o numeric, i.e., a real or integer value;

o string, i.e., a sequence of characters between paren-
theses (), or a sequence of hexadecimal characters
between angle brackets < >;

o name, i.e., a literal sequence of characters that starts
with a forward slash /;

o array, ie., a sequence of objects between square
brackets [|;

o dictionary, i.e., an object composed by a sequence of
key-value pairs, enclosed by double angle brackets
<< >> (e.g., the trailer object is a dictionary);

o stream, i.e., a special object consisting of a dictionary
and a sequence of data (typically, compressed text
or images), introduced by the keyword stream.

The aforementioned objects are divided into two cate-
gories. Objects that are marked by a number (introduced
by the string objNum 0 obj) are called indirect, whereas
objects that are not marked by a number are called direct.
Indirect objects are typically dictionaries, and can be
referenced by other objects with the string objNum 0 Ref.
An example of indirect object introduced by the string
4 0 obj is shown in Figure [1} In this case, the keyword
/Length introduces the size of the object, whose value is
contained in object 5 (this reference is defined by 5 0 R).
The remaining two keywords define the characteristic of
the object, which in this case contains information about
the filter used for data compression (/FlateDecode).
The PDF graph mainly contains indirect objects.

Header | | %PDF-1.3

40 obj
<< /Length 5 0 R /Filter
Body /FlateDecode >>

endobj

xref
0 26
0000000000 65535 £

Cross-
reference
Table

PDF file

trailer

<< ... /Root ... >>
startxref

377177

$SEOF

\ . J

Trailer

Fig. 1: PDF file structure, with examples of header, body,
cross-reference table and trailer contents. Object names
(i.e., keywords) are highlighted in bold.

When a reader renders a PDF file, it starts from the
trailer object and parses each indirect object (referenced
by the x-ref table), decompressing its data. In this way, all
pages, text, images and scripting code are progressively
shown.

3 PDF MALWARE

The capability of embedding different kinds of content
does not only make the PDF file format a convenient way
of legitimately sharing information. It also gives attack-
ers the possibility of exploiting a larger number of poten-
tial vulnerabilities. In fact, PDF malware is multifaceted,
conceived to exploit the flexible nature of the PDF file
format. Typically, JavaScript code, encoded streams and
embedded objects (e.g., images, ActionScript code) are
used to exploit a vulnerability of the PDF reader and
subsequently allow execution of remote code. In the
following, we briefly discuss some popular examples of
attacks in which an embedded object (respectively, an
image, an executable and a ShockWave Flash file) is used
to exploit a vulnerability of the PDF reader.

The first example exploits the so-called Adobe Reader
BMP/RLE heap corruption vulnerability (CVE-2013-
2729) to download and install malware from a remote
website[l] In this case, the malicious PDF file contains a
form with an encoded bitmap image. When the PDF file
is opened, the image is automatically decoded, causing
a heap overflow that allows execution of remote code.

Another example, reported by Contagio in 2010,
shows how to execute binary code by simply opening
a PDF file (CVE—2010—1240)E] A code excerpt of the
embedded object that implements this attack is reported
below.

1. http:/ /eternal-todo.com/blog/cve-2013-2729-exploit-zeusp2p-
gameover

2. http:/ /contagiodump.blogspot.it/2010/08/cve-2010-1240-with-
zeus-trojan.html

http://eternal-todo.com/blog/cve-2013-2729-exploit-zeusp2p-gameover
http://eternal-todo.com/blog/cve-2013-2729-exploit-zeusp2p-gameover
http://contagiodump.blogspot.it/2010/08/cve-2010-1240-with-zeus-trojan.html
http://contagiodump.blogspot.it/2010/08/cve-2010-1240-with-zeus-trojan.html

155 0 obj
<<
/Type /Action /S /Launch /Win
<<
/F (cmd.exe)
/P (/c echo Dim BinaryStream > vbsl.vbs
&& echo Set BinaryStream =
CreateObject ("ADODB. Stream") >>

ce. >
endobj
This object executes the (Windows) command prompt
(cmd. exe) and uses it to run a Visual Basic script that re-
trieves and executes the Zeus trojan. Notably, execution
of binary files has been inhibited in subsequent versions
of Adobe Reader, to limit this kind of exploitation.
Despite this, and even if this attack is almost seven years
old, only 33 out of the 55 anti-malware systems used in
VirusTotal correctly detect this file as malicious.

Malicious ShockWave Flash (SWF) files and Action-
Script code can also be embedded in PDF files to exploit
vulnerabilities of the Flash interpreter used by Adobe
Reader. An example is the zero-day vulnerability dis-
covered in 2010 (CVE—2010—1297)E] which was exploited
through the execution of a malicious ActionScript code
fragment contained in an embedded SWF file. After
exploitation, the infection of the victim machine was
completed by running an executable file, also stored as
an encrypted stream in the PDF file, which eventually
dropped other malware from malicious websites.

Besides embedding external objects, using malicious
JavaScript code constitutes the prominent way to attack
Adobe Reader. In particular, the goal of the exploit is
typically to bypass memory protections such as Data
Execution Prevention (DEP) and Address Space Layout
Randomization (ASLR) by resorting to a combination
of Heap Spraying and Return Oriented Programming
(ROP) gadgets. The main idea here is that the attacker
fills the Heap with multiple replicas of NOP sleds and
shellcode (typically built through ROP gadgets - instruc-
tions belonging to existing, legitimate libraries that can
be combined to build malicious routines). This is done to
increase the probability that, after memory corruption,
the execution of the process is redirected to the mali-
cious code. An example of this exploit procedure is the
CVE-2014-0496 vulnerability, whose full description is
reported in [8].

The aforementioned examples of attack only constitute
a small excerpt of the set of possibilities that an attacker
has in order to exploit the vulnerabilities of PDF read-
ers. Nonetheless, they clearly show how sophisticated
and different such attacks can be, also highlighting the
complexity of the detection task.

3. https:/ /blog.zynamics.com/2010/06/09/analyzing-the-
currently-exploited-0-day-for-adobe-reader-and-adobe-flash/

4 FORENSIC ANALYSIS OF PDF MALWARE

From a forensic perspective, assuming that the infection
started from a PDF file, it is essential to depict a basic
roadmap that the analyst can follow to identify the
suspicious PDF files. They can be detected (also after in-
fection) by the machine-learning approaches described in
the remainder of this manuscript, or identified through
some other source of information (e.g., by discussing
with the victim the possibility of being phished by a
scam e-mail). Then, their content can be analyzed to
identify the actions performed by the malicious code.
Accordingly, the analyst is required to first find the
suspicious indirect objects (i.e., the malicious scripting code
or files embedded in the PDF document) that are respon-
sible for the malware infection. To this end, he/she might
employ three different approaches, detailed below.

4.1 Keyword-based Analysis

The goal here is to extract the content (keywords) of
indirect objects to identify the actions performed by the
file; e.g., if the keyword /JavaScript is present, the
file contains some scripting code. Such analysis does not
typically decompress the streams related to the object,
but can give the analyst a quick overview of which parts
of the file to analyze more in detail. Normally, if no
suspicious keyword is present in the file, then this can
be considered as safe.

PDFiDE] to extract name objects is a forensic tool for
PDF files that can greatly aid this approach. It basically
performs textual analysis of all the dictionaries included
in the file, such as objects can be easily visualized with a
simple text editor (e.g., Notepad). The result is a list of
keyword objects, along with their occurrence in the file.
However, such tool can be easily deceived. First, there
is no control on how the objects are connected to each
other. This means that the tool can report objects that
are never parsed by the reader. Moreover, the tool does
not consider the global structure of the PDF file. Hence,
it can extract objects from positions in which they could
never be parsed by the reader (as it happens in [9]). For
these reasons, the results provided by the PDFiD should
be further confirmed by other tools/approaches.

4.2 Tree-based Analysis

Here the goal is to reconstruct the PDF file tree, i.e.,
the interconnections among its objects. PeePDEﬂ is a
publicly-available software that performs this operation
automatically. In particular, its analysis is performed
as follows: the system first looks for the trailer object
(containing the /Root keyword), which is always the
first object of the hierarchy. Then, it uses the reference
contained next to the /Root keyword to locate the
/Catalog object, which is the main object outside the
trailer. Each of the subsequent references is then used to

4. https:/ /blog.didierstevens.com /2009/03/31/pdfid/
5. http:/ /eternal-todo.com/tools/peepdf-pdf-analysis-tool

https://blog.zynamics.com/2010/06/09/analyzing-the-currently-exploited-0-day-for-adobe-reader-and-adobe-flash/
https://blog.zynamics.com/2010/06/09/analyzing-the-currently-exploited-0-day-for-adobe-reader-and-adobe-flash/
https://blog.didierstevens.com/2009/03/31/pdfid/
http://eternal-todo.com/tools/peepdf-pdf-analysis-tool

reconstruct the tree. Most malicious files are based on
trees that finish with objects containing suspicious ac-
tions. PeePDF automatically underlines them, and allow
dumping their stream for content analysis.

Origamil’| is very similar to PeePDF, as it also al-
lows to visualize the PDF file structure. It additionally
provides routines for encrypting and decrypting files,
extracting metadata, etc.

4.3 Code-based Analysis

The goal of the analyst here is to analyze embedded
scripting code without focusing on the internals of the
PDF file. This analysis is usually performed to un-
veil the presence of scripting lines related to known
vulnerabilities, which can provide clear hints on the
maliciousness of the file. PeePDF and Origami both
have functionalities to automatically detect suspicious
strings inside JavaScript codes. However, PhoneyPDF
is probably the best software to perform such analysis.
In fact, this software (written in Python) first detects
objects bearing JavaScript-related keywords. Then, it
instruments and executes the extracted JavaScript code
with a JavaScript interpreter to point out suspicious
functions. Such analysis is limited by the fact that it is
only related to the detection of JavaScript, and ignores
other attack possibilities, like SWF file embedding.

5 LEARNING-BASED PDF MALWARE DETEC-
TION

The aforementioned forensic techniques can be used
after the identification of a set of suspicious PDF files, to
identify the malware code responsible for the infection
and characterize its behavior. The learning-based PDF
malware detection tools discussed in this section have
been normally proposed to prevent novel infections, but
they can also be used in a forensic investigation, to
identify the suspicious PDF files which demand for a
subsequent detailed analysis. Notably, machine learning
has been increasingly applied as a key component in
recent PDF malware detectors to counter the growing
variability and sophistication exhibited by current PDF
malware. The design of such tools is based on the three
main steps shown in Figure 2} and described below.

5.1

As many other malware detection tools, the first step
of PDF malware detectors is to analyze PDF files stat-
ically and/or dynamically. In the former case, the file is
not executed, and information is extracted solely based
on static code inspection (typically, through parsing the
code). In the latter case, suspicious PDF files are dynam-
ically executed through sandboxing, in protected virtual
environments, and their behavior is monitored. Dynamic
analysis is usually more effective at detecting malicious

Pre-processing

6. http:/ /esec-lab.sogeti.com/pages/origami.html

files, especially when the embedded malicious code has
been obfuscated to compromise static analysis. However,
dynamic analysis is normally very computationally de-
manding in terms of both space and time resources, and
it may be evaded by other techniques, like a delayed
execution of the malicious exploitation code. In the fol-
lowing, we provide an overview of the tools and libraries
that are typically used to extract data from PDF files in
current PDF malware detection systems.

5.1.1

PDF malware detectors based on dynamic analysis nor-
mally use sandboxing or code instrumentation (e.g.,
JSand or PhoneyPDF [6], [8]).

Conversely, detection systems based on static analysis
have adopted a variety of solutions over the years.
Slayer relies upon PDFiD from PDF files [1f]. Its up-
dated version (Slayer NEO [2]), instead, uses PeePDF
for a more in-depth analysis of embedded files, multiple
versions, and streamed objects, and Origami to perform
integrity checks on the file structure and content. These
analysis are useful to detect PDF malware hidden with
subtle embedding techniques, including anomalous or
malformed files.

Library-based parsing relies on specific PDF libraries
that can also be used by open-source PDF readers. The
most popular example is Poppler, a comprehensive
PDF library that is adopted by the popular open-source
reader XPDF. PJscan [7] and Hidost [3] use Poppler
to detect PDF files embedding malicious JavaScript code.
Although these libraries correctly implement most of the
Adobe PDF specifications, they may be vulnerable to
well-crafted malformations of PDF files.

Pre-processing with Third-party Software

5.1.2 Custom Pre-processing

We refer to pre-processing analyses which do not lever-
age any third-party PDF-specific tool or library as custom
pre-processing. Typically, it consists of implementing a
static, custom parser to pre-process the input PDF files.
This choice has the advantage of avoiding potential
vulnerabilities of existing libraries, e.g., if they do not
correctly handle some malformed files. PDFRate is a
good example of a PDF malware detector exploiting a
custom parsing mechanism [4], [5]. However, custom
parsing itself may introduce other vulnerabilities, if it
does not properly follow the Adobe PDF specifica-
tions. For example, Adobe Reader completely ignores
any object that is not referenced by the x-ref table in
a PDF file. Conversely, PDFRate parses those objects.
This misbehavior has been exploited in [9] to evade
PDFRate, through injection of well-crafted objects into
PDF malware files. Since these objects are ignored by
the reader, they would not compromise the malicious
functionality of the embedded exploitation code, while
enabling evasion of the detection system. We refer the
reader to [13] for an in-depth evaluation of the vulnera-
bilities of PDF parsing tools.

http://esec-lab.sogeti.com/pages/origami.html

- Learning-based PDF malware detection

—-| malicious

—>| Pre-processing [-— Featu.re > Classifier
O extraction ~
B¢ O e]
\ 1 legitimate
PDF file ! !
t-—--- » Training

Fig. 2: Graphical architecture of a learning-based PDF malware detection tool.

TABLE 1: An overview of the main characteristics of current PDF malware detectors.

Detector Pre-processing Features Classifier
Wepawet [6] Dynamic JSand JS-based Bayesian
PJScan [7] Static Poppler JS-based SVM
Hidost [3] Static Poppler Structural Random Forest
LuxOR [8] Static PhoneyPDF JS-based Random Forest
Slayer [1] Static PDFID Structural Random Forest
Slayer NEO [2] Static PeePDF+Origami Structural Adaboost
PDFRate [4] Static Custom Structural Random Forest
PDFRate (updated) [5] Static Custom Structural Classifier Ensemble

5.2 Feature Extraction

To classify PDF files as legitimate or malicious using a
learning-based algorithm, a preliminary, required step is
to represent each file as a numerical vector of fixed size.
This process is usually referred to as feature extraction.

5.2.1 JavaScript-based Features

The vast majority of PDF malware relies on the em-
bedding of malicious JavaScript code. For this rea-
son, specific features have been exploited to detect
evidence of such behavior. The detection approach
named PJScan [7] aims to detect the presence of ma-
licious (obfuscated) JavaScript code by considering oc-
currences of suspicious API calls like eval or replace,
and of string-chaining operators like +, among oth-
ers. LuxOR [8] leverages code instrumentation to detect
the presence of API calls in JavaScript code that are
specifically used for PDF-related operations. Wepawet
dynamically executes the embedded JavaScript code us-
ing Jsand, and then extracts features mostly related to
method calls and shellcode memory allocation.

5.2.2 Structural Features

Structural features are only related to the characteristics
of the name objects present in the PDF file. They do
not consider any analysis of the embedded exploitation
code. This has the advantage of being sufficiently general
to detect PDF malware embedding different malicious
code (e.g., JavaScript or ActionScript). However, since
the malicious code is not analyzed at all, it is likely that
such features can be easily misled by constructing PDF
files with similar objects to those typically appearing
in legitimate files. PDF malware detectors based on
such features include Slayer and Slayer NEO [1], [2],
Hidost [3], and PDFRate [4], [5].

5.3 Learning and Classification

Independently from the chosen feature representation,
after feature extraction, each PDF file is represented in
terms of a numerical vector z € RY. This abstraction
enables using any kind of learning algorithm to perform
classification of PDF documents, as described in the fol-
lowing. First, a learning algorithm is trained to recognize
a set of known examples D € {z;,y;}}_;, labeled either
as legitimate (y = —1) or as malicious (y = +1). During
this process, the parameters of the learning algorithm (if
any) are typically set according to some given perfor-
mance requirements. After training, the learning algo-
rithm provides a classification function f(x) € {—1,+1}
that can be used to classify never-before-seen PDF files
as legitimate or malicious. Clearly, the selection of an
appropriate learning algorithm depends on the given
data, and on the feature representation. Accordingly, one
normally tests different algorithms and retains the one
that best fits the given application requirements. The
PDF malware detectors mentioned throughout this arti-
cle adopt different learning algorithms; e.g., Wepawet [6]
uses a Bayesian classifier, PJScan [7] uses Support
Vector Machines (SVMs), while several other approaches
use classifier ensembles including Random Forests and
Adaboost [1]-[4], [8]], also to improve resilience against
some kinds of attack [5].

6 EVADING LEARNING-BASED PDF MAL-
WARE DETECTION

Learning-based PDF malware detection has been shown
to be effective in detecting malware samples in the
wild. However, it is natural to expect that the level
of sophistication of the next generation of attacks will
increase again, exploiting vulnerabilities of the archi-
tectural components of the detection system that we
depicted in Figure |2, including the learning algorithm,

as envisaged in [9], [10]. In a typical evasion setting,
the attacker’s goal is to evade classifier detection by
manipulating malware under the constraint that it pre-
serves its intrusive functionality, according to a given
level of knowledge of the targeted system. In general,
the attacker may know, partially or completely, part of
the training data used to learn the classification function,
how features are computed from PDF files, and which
learning algorithm is used.

Different attacks against PDF malware detectors have
been recently proposed [4], [8], [9], [11], [12], [14]. In
terms of the attacker’s capability, they only consider
the injection of different kinds of content into a PDF
malware sample. Removing objects is typically avoided,
to keep the functionality of the exploitation code intact.
In terms of the attacker’s knowledge, mimicry [4], [8] and
reverse mimicry [12]] attacks do not exploit any specific
knowledge of the attacked system. In both cases, the
content of a benign file is embedded into a malicious
PDE, or vice-versa. In particular, in a mimicry attack,
the attacker injects benign content (i.e., content extracted
from one or more benign PDF files) in a malicious file, to
increase the probability of evading detection. Conversely,
in a reverse mimicry attack, the malicious content is
injected into a benign file. More sophisticated attacks,
usually referred to as evasion attacks, have been proposed
against learning-based PDF malware detectors in [9],
[11]. These attacks exploit knowledge of the feature
set and of the classification function to minimize the
number of modifications required to evade detection,
while maximizing the probability of evasion. We refer
the reader to [9]|-[11], [15] for further details on how to
implement such attacks.

6.1

Three different techniques can be used to inject content
into a PDF file, as conceptually depicted in Figure
(a) injecting objects after the x-ref table, as done in [9]
to evade PDFRate; (b) using the versioning mechanism
of the PDF file format, i.e., injecting a new body, x-ref
table and trailer, as if the file was directly modified by
the user (e.g., by using an external tool); and (c) directly
acting on the existing PDF graph, adding new objects to
the file body and re-arranging the x-ref table accordingly.

The first strategy is easy to implement, but it can be
made ineffective by simply patching the pre-processing
module of the PDF malware detector to be consistent
with Adobe Reader. In fact, within this strategy the
injected content is ignored by Adobe Reader, but not
by the pre-processing module of PDFRate. This strategy
can clearly be used only in mimicry and evasion attacks,
to add benign content to a malicious PDF file. The other
two strategies, instead, can be used to perform reverse
mimicry attacks, by injecting malicious code into a be-
nign PDF file. The second strategy is easier to implement,
but, clearly, also easier to spot, as it would suffice to
correctly extract the additional versions embedded in the

Content Injection in PDF Files

Header | | Header | | Header

Body Body

Extended Body

Cross-reference
Table

Cross-reference
Table

Extended Cross-
reference Table

Injected Content Trailer

Trailer Body (V1) Trailer

(a) (c)

X-Ref Table (V1)

Trailer (V1)

(b)

Fig. 3: Content injection in PDF files: (a) injecting objects
after the x-ref table; (b) using the versioning mechanism
of the PDF file format; and (c) adding objects to the file
body and extending the x-ref table accordingly.

file and process them separately. The third strategy is
more complex to implement and to detect, as it seam-
lessly adds objects in a PDF file yielding a PDF which is
essentially indistinguishable from a newly-created one.
It can be implemented using Poppler to manage and re-
arrange the x-ref table objects without corrupting the file.
Existing objects can also be modified by adding other
name objects and rearranging the x-ref table positions
accordingly. Notably, it is important to ensure that the
embedded content (i.e., the exploitation code) is correctly
executed when the merged PDF is opened. This is not
an easy task, as it requires injecting additional objects
specifically for this purpose.

6.2 Empirical Results on Detection Systems

We report here an empirical evaluation of PDF malware
detection tools against reverse mimicry attacks, which
only require a limited number of structural changes to
the benign source file (with respect to other content-
injection attacks). Content injection in reverse mimicry
can be performed with the techniques (b) and (c) de-
picted in Figure

We consider here injection of three different types of
content: (¢) a malicious JavaScript exploitation routine,
(7¢) a malicious PDF file, and (ii¢) a malicious executable
(i.e., the Zeus trojan payload).

JavaScript embedding was performed by injecting the
same malicious code in different benign files, for two
reasons: (a) we wanted to verify whether different PDF
file structures could influence the detection of the same
malware; (b) the current version of this embedding
procedure only supports malicious codes contained in

1%
X 69,0%
Sl
W B 40,8%

3,0% (67)
ca0 | 1,0% (499)
?‘\S i, 87,1% (440)
1,2%
RAC L — 95,2%
28,8%
B 45,

o0f
94,8%
\NO@S\] 59,8%

o0 \\ke\J B 17,8%

96,0%
o Q’\\)\\\ I 9,4%

35,9%
[
oy

PDF Embedding
u Executable File Embedding
u Javascript Embedding

Fig. 4: Detection rate of state-of-the-art PDF malware
detectors against reverse mimicry attacks embedding
different content, using 500 files per attack. Due to pars-
ing problems, the detection rate of PJScan is estimated
on a subset of files, as reported in parentheses.

one single object. More advanced attacks usually involve
spreading JavaScript codes in multiple objects. It would
have been therefore unfeasible to use different malicious
codes. In the PDF embedding attack, we injected one
random malicious file (gathered from VirusTota
into each benign file. We wrote efficient injection routines
for both JavaScript and PDF embedding attacks by em-
ploying Poppler. EXE embedding was performed using
Metasploit to automatically inject a malicious payload in
each benign file.

Each of the aforementioned malicious contents was
hidden into 500 different benign PDF files (gathered
from the Yahoo search engine), yielding a complete
dataset of 1,500 reverse mimicry attacks, which are
publicly availableﬂ PJScan, Hidost and Slayer NEO
were all trained with a dataset composed by more than
20000 malicious and benign files, respectively collected
from VirusTotal and the Yahoo search engine. For
the sake of a fair comparison, we also trained Slayer
NEO and Hidost with the same classification algorithm
(Adaboost). Note also that Slayer NEO was used by
employing both the algorithm described in [1] (key-
words) and the one described in [2] (keywords and
content-based features).

The results are reported in Figure@ PDFRate, Slayer

7. http:/ /www.virustotal.com
8. https:/ /pralab.diee.unica.it/en/pdf-reverse-mimicry /

Neo, and Hidost are especially effective at detecting
EXE embedding attacks, as they introduce specific key-
words. However, they struggle at detecting JavaScript-
based attacks, as PDF structures that are apparently
malicious in terms of keywords can simply contain
benign code. Content-based systems are more effective
at detecting embeddings of JavaScript code, but they
might fail under specific circumstances. PJScan, in par-
ticular, suffers from the presence of multiple embedded
JavaScript codes, which may happen when embedding
a malicious script into a benign file that already contains
JavaScript codes.

With respect to PDF embedding attacks, Slayer NEO
is the only effective system that can detect them, as it
automates the analysis of embedded files. In particular,
as the system extracts and analyzes embedded files
separately from their benign containers, its detection
capabilities are not influenced by the presence of benign
features.

In conclusion, we can state that there is no unique
solution for detecting all the attacks. Each tool should be
considered to perform a thorough digital investigation.

7 SUMMARY AND OPEN PROBLEMS

In the last decades, fueled by a flourishing underground
economy, malware has grown exponentially, not only
in terms of the mere number of variants and families,
but also in terms of sophistication, mainly to evade
current detection approaches. In this article, we have
discussed how the PDF file format can be exploited by
attackers to convey malware, leveraging the possibility
of embedding different kinds of content, and, accord-
ingly, of exploiting different, potential vulnerabilities. We
have provided practical examples of known malware
and zero-day exploits, and discussed current detection
systems based on machine learning. We believe that such
systems can be extremely helpful for a forensic analyst
to understand the suspiciousness of a PDF file, and
the potential root causes behind infection. Envisaging
the next step of the arms race between malware and
system developers, we have then discussed the security
properties of learning algorithms against well-crafted
evasion attempts, reporting also some empirical results.
This is another important aspect besides improving the
security of other system components like pre-processing
and parsing, since machine-learning algorithms exhibit
intrinsic vulnerabilities that will be, sooner or later,
exploited by skilled and economically-motivated attack-
ers. In a security-by-design perspective, being proactive
demands for the development of adversarial learning ma-
chines, i.e., learning algorithms that explicitly account
for the presence of malicious input data manipulations
and provide improved security guarantees [9], [10], [15].
This may definitely be one of the most relevant research
challenges in the coming years.

http://www.virustotal.com
https://pralab.diee.unica.it/en/pdf-reverse-mimicry/

REFERENCES

(1]

(2]

(3]

(4]

(5]

6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

D. Maiorca, G. Giacinto, and 1. Corona, “A pattern recognition
system for malicious pdf files detection,” in 8th Int. Conf. on M.
Learning and Data Mining in Pattern Recognition, 2012.

D. Maiorca, D. Ariu, I. Corona, and G. Giacinto, “A structural
and content-based approach for a precise and robust detection of
malicious PDF files,” in 1st Int’l Conf. Information Systems Security
and Privacy, 2015, pp. 27-36.

N. Srndi¢ and P. Laskov, “Hidost: A Static Machine-learning-
based Detector of Malicious Files,” in EURASIP]. Inf. Secur.,
December 2016.

C. Smutz and A. Stavrou, “Malicious pdf detection using meta-
data and structural features,” in 28th Annual Computer Security
Appl. Conf., 2012.

, “When a tree falls: Using diversity in ensemble classifiers to
identify evasion in malware detectors,” in 23nd Annual Network &
Distributed System Security Symp., San Diego, California, USA, 2016.
M. Cova, C. Kruegel, and G. Vigna, “Detection and analysis of
drive-by-download attacks and malicious Javascript code,” in 19th
Int’l Conf. World Wide Web, 2010.

P. Laskov and N. Srndi¢, “Static detection of malicious javascript-
bearing PDF documents,” in 27th Annual Computer Security Appli-
cations Conf., 2011.

I. Corona, D. Maiorca, D. Ariu, and G. Giacinto, “Lux0OR: Detec-
tion of malicious PDF-embedded Javascript code through discrim-
inant analysis of API references,” in Workshop on Artificial Intell.
and Sec., ser. AlSec ‘14. New York, NY, USA: ACM, 2014, pp.
47-57.

N. Srndic and P. Laskov, “Practical evasion of a learning-based
classifier: A case study,” in IEEE Symp. Security & Privacy, ser. SP
"14. Washington, DC, USA: IEEE CS, 2014, pp. 197-211.

B. Biggio, G. Fumera, and F. Roli, “Security evaluation of pattern
classifiers under attack,” IEEE Trans. Knowl. and Data Eng., vol. 26,
no. 4, pp. 984-996, April 2014.

B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Srndi¢, P. Laskov,
G. Giacinto, and F. Roli, “Evasion attacks against machine learn-
ing at test time,” in European Conf. Mach. Learn. and Principles and
Practice of Knowl. Disc. in Databases, ser. LNCS, H. Blockeel et al.,
Eds., vol. 8190. Springer Berlin Heidelberg, 2013, pp. 387-402.
D. Maiorca, I. Corona, and G. Giacinto, “Looking at the bag is
not enough to find the bomb: An evasion of structural methods
for malicious PDF files detection,” in 8th ACM SIGSAC Symp. on
Information, Computer and Communications Security, 2013.

C. Curtis, X. Hu, H. Yin, A.V. Bhaskar and M. Zhang, “Extract Me
If You Can: Abusing PDF Parsers in Malware Detectors,” in 23th
Annual Network & Distributed System Security Symp., San Diego,
California, USA, 2016.

W. Xu, Y. Qi, and D. Evans, “Automatically Evading Classifiers: A
Case Study on PDF Malware Classifiers,” in 23th Annual Network
& Distributed System Security Symp., San Diego, California, USA,
2016.

A. Kantchelian,].D. Tygar, and A. Joseph, in “Evasion and hard-
ening of tree ensemble classifiers,” in Int’l Conf. Machine Learning,
pp. 2387-2396, 2016.

Davide Maiorca (M’16) received from the Uni-
versity of Cagliari (ltaly) the M.Sc. degree
(Hons.) in Electronic Engineering in 2012 and
the Ph.D. in Electronic Engineering and Com-
puter Science in 2016. In 2013, he visited
the Systems Security group at Ruhr-Universitéat
Bochum, guided by Prof. Dr. Thorsten Holz,
and worked on advanced obfuscation of Android
malware. His current research interests include
adversarial machine learning, malware in docu-
ments and Flash applications, Android malware

and mobile fingerprinting. He has been a member of the 2016 IEEE
Security & Privacy Student Program Committee.

Battista Biggio (SM’17) received the M.Sc.
degree (Hons.) in Electronic Engineering and
the Ph.D. degree in Electronic Engineering
and Computer Science from the University of
Cagliari, ltaly, in 2006 and 2010. Since 2007, he
has been with the Department of Electrical and
Electronic Engineering, University of Cagliari,
where he is currently an Assistant Professor. In
2011, he visited the University of Tlbingen, Ger-
many, and worked on the security of machine
learning to training data poisoning. His research
interests include secure machine learning, multiple classifier systems,
kernel methods, biometrics and computer security. Dr. Biggio serves as
a reviewer for several international conferences and journals. He is a
senior member of the IEEE and a member of the IAPR.

	Introduction
	PDF File Format
	PDF Malware
	Forensic Analysis of PDF Malware
	Keyword-based Analysis
	Tree-based Analysis
	Code-based Analysis

	Learning-based PDF Malware Detection
	Pre-processing
	Pre-processing with Third-party Software
	Custom Pre-processing

	Feature Extraction
	JavaScript-based Features
	Structural Features

	Learning and Classification

	Evading Learning-based PDF Malware Detection
	Content Injection in PDF Files
	Empirical Results on Detection Systems

	Summary and Open Problems
	References
	Biographies
	Davide Maiorca (M'16)
	Battista Biggio (SM'17)

