
Multiple classifier systems under attack

Battista Biggio, Giorgio Fumera, and Fabio Roli

Dept. of Electrical and Electronic Eng., Univ. of Cagliari
Piazza d’Armi, 09123 Cagliari, Italy

{battista.biggio,fumera,roli}@diee.unica.it
WWW home page: http://prag.diee.unica.it

Abstract. In adversarial classification tasks like spam filtering, intru-
sion detection in computer networks and biometric authentication, a pat-
tern recognition system must not only be accurate, but also robust to ma-
nipulations of input samples made by an adversary to mislead the system
itself. It has been recently argued that the robustness of a classifier could
be improved by avoiding to overemphasize or underemphasize input fea-
tures on the basis of training data, since at operation phase the feature
importance may change due to modifications introduced by the adver-
sary. In this paper we empirically investigate whether the well known
bagging and random subspace methods allow to improve the robustness
of linear base classifiers by producing more uniform weight values. To
this aim we use a method for performance evaluation of a classifier un-
der attack that we are currently developing, and carry out experiments
on a spam filtering task with several linear base classifiers.

1 Introduction

In adversarial classification tasks like spam filtering, intrusion detection in com-
puter networks and biometrics [1–4], the goal of a pattern recognition system
is to discriminate between two classes, which can be named “legitimate” and
“malicious”, while an intelligent adversary manipulates samples to mislead the
system itself. Adversarial classification problems are therefore non-stationary,
which implies that a pattern recognition system should be designed by taking
into account not only its accuracy (usually evaluated from a set of training sam-
ples) but also its robustness, namely the capability of undergoing an accuracy
degradation as low as possible when it is under attack. Very few works addressed
so far the problem of devising practical methods to improve robustness. Recently,
in [7] it was suggested that a more robust classifier could be obtained by avoiding
to give features too much or too little emphasis during classifier training, and
a similar approach was suggested in [6]. This allows to design robust classifiers
against attacks in which the adversary exploits some knowledge on the classifi-
cation function (e.g., the most discriminant features), as we discuss in the next
section.

It is well known that one of the main motivations for the use of multiple clas-
sifier systems (MCSs) is the improvement of classification accuracy with respect

to a single classifier. Recently, MCSs have also been applied to adversarial clas-
sification tasks based only on intuitive motivations, although there is no clear
evidence so far that they can be also useful to improve robustness. Our aim
is to investigate whether and under which conditions MCSs allow to improve
the robustness of a pattern recognition system in adversarial classification tasks,
with respect to a single classifier architecture. In this work we will focus on two
of the most known methods for constructing MCSs, namely bagging [8] and the
random subspace method (RSM) [9]. The reason is that we argue that these
methods could result in avoiding to give features too much or too little emphasis
with respect to a single classifier during classifier training, which is the strat-
egy suggested in [7] to improve robustness. Accordingly, we first experimentally
investigate whether this assumption holds in practice, and then, whether this
allows bagging and RSM to produce more robust classifiers. Our experimental
analysis was carried out on a spam filtering task, using the well known and
widespread open source anti-spam filter SpamAssassin [10].

In Sect. 2 we survey related works. The method to assess the robustness is
explained in Sect. 4.1. The experiments are reported in Sects. 4 and 5.

2 Related works

MCSs are currently being used in several adversarial classification tasks, like
multimodal biometric systems [1, 4], intrusion detection in computer systems
[2], and spam filtering [11–13]. Two practical reasons are that in many of such
tasks several heterogeneous feature subsets are available, and they can be easily
exploited in a MCS architecture where each individual classifier is trained on
a different feature subset [1]; moreover, in tasks like intrusion detection it is
often necessary to face never-seen-before attacks, which can be easily done with
a MCS architecture by adding new classifiers. For instance, MCSs are used in
commercial spam filters which use heterogeneous information sources to label
incoming e-mails (like the e-mail’s text, its header, the attached images if any,
etc.). Another motivation was proposed by several authors: using many classifiers
would improve robustness because it would require the adversary to evade all
the individual classifiers, or at least more than one of them, to evade the whole
system [4, 2, 11]. However, we point out that this motivation is only based on
intuition, and its validity has never been evaluated. Accordingly, understanding
whether and how MCSs actually allow to improve robustness is still an open
question.

In our past works we addressed this problem under several viewpoints. Since
adding new detection rules to a system in response to new attacks is a common
practice in spam filtering and in intrusion detection in computer systems, in
[14] we investigated whether adding classifiers to a given ensemble can improve
its robustness. In [15] we analysed a randomization strategy based on MCSs to
improve robustness by preventing an adversary from gaining too much knowl-
edge on a classifier. However in these works we used an analytical model for
adversarial classification problems proposed in [5], which is based on unrealis-

tic assumptions, and thus our results could not be exploited to devise practical
methods to design robust classifiers. In [16] we provided an empirical evidence1

that a MCS architecture can be more robust than a single classifier architecture.
This work was however limited to a non-standard MCS architecture (a logic OR
of Boolean outputs of individual classifiers).

Among the few practical methods proposed so far in the literature for im-
proving classifier robustness, the ones in [6, 7] are particularly interesting since
they are not limited to a specific task. In [7] it was pointed out that assessing
the performance of a classifier during its design phase is likely to provide an op-
timistic estimate of the performance at operation phase, since training samples
cannot contain any attack targeted to the classifier under design. In particular,
if some features have a high discriminant capability on training samples and the
adversary is aware of that, he could manipulate his samples at operation phase
to modify the values of such features. The consequence is that their discrimi-
nant capability becomes lower at operation phase. For instance, text classifiers
based on the bag of words feature model (in which terms occurrence or fre-
quency are used as features) are widely used in spam filters. However spammers
can guess the most discriminant terms that characterize spam and legitimate
emails, and indeed two real and widely used attack strategies consist in cam-
ouflaging “spammy” terms (e.g., by misspelling them) to avoid their detection,
and in adding “legitimate” terms not related to the spam message. The strategy
proposed in [7] to improve robustness is hence to avoid to give features too much
or too little emphasis during classifier training, to protect the classifier against
such kinds of attacks. Several versions of this strategy were devised for linear
classifiers, resulting in learning algorithms whose goal is a trade-off between at-
taining a high training accuracy and forcing the feature weights to be as much
uniform as possible. A seemingly different strategy was proposed in [6], where a
SVM-like learning algorithm was developed to make a linear classifier based on
Boolean features robust against the modification of the most important features.
Interestingly, it turns out that the effect of the proposed algorithm is similar to
the strategy of [7], namely it results in producing more uniform weight values.

3 Motivations of this work

The strategies in [6, 7] are based on the intuition that, to improve robustness
against attacks based on some knowledge on the relevance of each feature in the
classifier’s decision function, it can be useful to prevent the learning algorithm to
overemphasize or underemphasize features. In the case of linear classifiers this
strategy can be implemented by forcing the feature weights to be as uniform
as possible. In this paper we investigate whether this effect can be obtained
by some known MCS construction methods. We focus in particular on the well
known bagging and RSM. In RSM, base classifiers are trained on randomly cho-
sen feature subsets. Thus each feature may not be used by some base classifiers.
In the particular case of linear classifiers, we can say that the most discriminant
1 Reported analytical results turned out to be wrong (see the Erratum below).

features (on the training set) have a zero weight when they are not used, so their
average weight across base classifiers could be lower than in a classifier trained
on the whole feature set. Analogously, the average weight of less discriminant
features could be higher in average, since their importance can be higher if they
are used in base classifiers where the most discriminant features do not appear.
When bagging is used, the training set of each base classifier is a bootstrap
replicate of the original training set. Therefore, each training sample could not
appear in some bootstrap replicates. One of the possible effects could be a re-
duction of the average weight of most discriminant features and an increase of
the average weights of less discriminant ones. As mentioned above, our goal is
to experimentally investigate whether and how this happens, and whether this
results in a higher robustness with respect to an individual classifier, against at-
tacks based on some knowledge on the feature discriminant capability. We focus
in particular on a linear combination of linear classifiers, which can be easily
analysed. Indeed the discriminant function of such a linearly combined set of
classifiers can be written as:

g(x) =
1
K

K∑
k=1

(
n∑

i=1

wk
i xi + wk

0

)
=

n∑
i=1

wavg
i xi + wavg

0 (1)

which is still a linear discriminant function in feature space, where K is the
number of base classifiers, n the number of features of each base classifier and
wavg

0 . . . wavg
n are the weights assigned by the MCS to the input features, each

one computed by averaging the correspondent K weights of the base classifiers.
Therefore, our goal is to understand whether the weights wavg

0 . . . wavg
n obtained

by bagging and by RSM are more uniform than the weights of a single linear
classifier trained on the whole feature set and on all the available training sam-
ples, and whether this results in a higher robustness under attack with respect
to an individual classifier.

4 Experimental setup

We first describe the method used in this paper to evaluate the robustness of a
classifier, and then the data set and the classifiers used in the experiments.

4.1 A method to assess the robustness of classifiers under attack

Ideally, the robustness of a classifier against a given attack should be evaluated on
samples corresponding to such attack. However training samples cannot contain
attacks devised against the classifier which is being designed, as pointed out
in [7], and it could be very difficult to construct real attacks. Accordingly, we
are currently developing a methodology to evaluate classifier’s robustness, whose
basic idea is to evaluate the accuracy of a classifier on artificial samples obtained
by modifying the feature vectors of the available malicious testing samples with
the aim of simulating the effect of a given attack of interest. Our methodology

is an extension of the method used in [7] to evaluate the proposed strategies to
improve robustness (see Sect. 2).

The modifications to feature vectors of testing samples can be made with
different criteria, depending on the specific application, the classifier and the
attack to simulate. Nevertheless, in general it is useful to evaluate robustness
under attacks of different strength [17, 6, 7]. The attack strength on a given sam-
ple can be measured as the distance in the feature space between the original
sample and the one camouflaged by the attacker. We point out that the distance
in feature space was used in [5, 18] to measure the adversary’s effort in modify-
ing a given sample. The underlying rationale is that the more modifications an
adversary makes to a sample, the more is the required effort. In particular, in
the case of binary features a straightforward distance measure is the Hamming
distance, which amounts to the number of features modified to “camouflage” a
malicious sample.

One of the conditions under which it can be interesting to evaluate robustness
is a “worst case” attack, in which the adversary is assumed to exactly know
the classifier’s decision function. Let us denote with A(x) the modification of a
feature vector x, with m the maximum distance in the feature space between
the original and modified feature vector x′ according to a given metric d(·, ·)
(namely, the maximum attack strength), and with g(x) the discriminant function
of the considered classifier, with the convention that the decision function is
f(x) = sign g(x) ∈ {−1, +1}, and that +1 and −1 are the labels respectively of
the malicious and legitimate class. For any given malicious pattern x, the worst
case attack is the one which modifies x to the pattern x′ which decreases most
the value of the discriminant function g(x′), under the constraint d(x, x′) ≤ m.
This can be written as the solution of a constrained optimization problem:

A(x) = argminx′g(x′), s.t. d(x, x′) ≤ m . (2)

In the case when the features are Boolean (and thus m corresponds to the
maximum number of features which can be modified), d(·, ·) is the Hamming
distance and the discriminant function is linear (g(x) =

∑n
i=1 wixi + w0), it is

easy to see that the solution can be found as follows. First the absolute values of
the weights |w1|, . . . , |wn| must be sorted in decreasing order. Then the features
must be considered in that order, and the values of up to m of them must be
switched either from 1 to 0, if the corresponding weight is positive, or from 0 to
1, if the weight is negative.

4.2 Data set and base classifiers

Our experiments were carried out on a spam filtering task. We used the TREC
2007 e-mail corpus, publicly available at http://plg.uwaterloo.ca/~gvcormac/
treccorpus07 and made up of 75,419 real e-mails (25,220 legitimate and 50,199
spam messages). We considered the first, second and third sequence of 10,000
e-mails (in chronological order) denoted in the following as D1, D2 and D3, to
build the training and testing sets as described below. The performance measure

adopted to evaluate accuracy and robustness is the portion of the area under
the ROC curve corresponding to false positive (FP) error rates between 0 and
10%, denoted as AUC10%. Since the area under the whole ROC curve takes on
values in [0, 1], AUC10% takes on values in [0, 0.1]. This measure was suggested
in [7], to take into account the fact that in adversarial classification tasks (and
especially in security applications) FP errors are typically much more harmful
than false negative ones, and thus the classifier’s operating point is required to
have a low FP rate. We carried out two sets of experiments, with two different
linear classifiers used in spam filtering tasks.

Experiment 1. In the first set of experiments we used two text classifica-
tion algorithms proposed in the spam filtering literature, namely, support vector
machine (SVM) [19] and logistic regression (LR) [7]. The e-mails in D1 and D2

were used to build respectively the training and testing set. We used the bag of
words feature model, which is a common choice in text classification and spam
filtering tasks. We first constructed a vocabulary, namely the set of distinct terms
appearing in training e-mails (to this aim we used the anti-spam filter SpamAs-
sassin [10], see below), which turned out to be 366,709. Each training and testing
e-mail was then represented as a feature vector of the same size, in which each
component was associated to a vocabulary term, and was set to 1 if that term
occurred in the e-mail, to zero otherwise. The LR classifier was trained by max-
imising the classification accuracy through a gradient descent algorithm. Since
the original feature set was too large for SVMs, we selected 20,000 features from
training e-mails using the information gain criteria. The C parameter of the SVM
learning algorithm was chosen among the values {0.001, 0.01, 0.1, 1, 10, 100} by
maximising the AUC10% through a 5-fold cross validation on the training set. In
the experiments we compared a single classifier built using LR and SVM, and
MCSs built using bagging and RSM, for different ensemble sizes (3, 5 and 10),
different fractions of randomly selected features from the original feature set for
RSM (20%, 50%, 80%), and different training set sizes for bagging (20% and
100% of the original one). The robustness was then evaluated using the method
described in Sect. 4.1 on the testing set.

Experiment 2. The second set of experiments was carried out using the
popular and widespread open source anti-spam filter SpamAssassin [10] (version
3.2.5). It is made up of some hundred Boolean “tests” on the e-mail content, each
one aimed at detecting a particular characteristic of spam or legitimate e-mails
(for instance the presence of a typical spam word, or a known e-mail’s header
malformation indicating that it has been forged by an automatic software, as
typically done by spammers [20]). Denoting with x = (x1, . . . , xn) ∈ {0, 1}n
the tests’ outputs, the decision function of the whole filter can be written as
f(x) = sign (

∑n
i=1 wixi + w0) where {w0, . . . , wn} ∈ Rn+1 is a set of weight

values, and sign(t) = +1 if t ≥ 0, −1 elsewhere. An e-mail is classified as
spam (legitimate) if f(x) = +1 (f(x) = −1). In our experiments, we used
only the tests whose value was not zero for at least one e-mail of the data set,
which turned out to be 549. Default weight values w0, . . . , wn are provided by

SpamAssassin developers2. These values were derived by manually adjusting the
values obtained by a perceptron trained over a huge amount of data, with the
aim of increasing the robustness of the spam filter. Note that default weights
of tests associated to characteristics of spam (legitimate) e-mails are positive
(negative). We used SpamAssassin as a linear classifier, and carried out the
same experiments described above for text classifiers. Namely, we computed the
weight values using an individual LR and SVM classifier, and a MCS obtained
using bagging and RSM, on the same base classifiers. These classifiers were also
compared to the individual classifier with the default weight values, namely the
standard SpamAssassin. We point out that some SpamAssassin tests (features)
are based on the outputs of a text classifier, which must be previously trained.
We trained it using the D1 e-mail subset. To compute the weights with the LR
and SVM classifiers we used the e-mails of the D2 subset as training set. The
LR an SVM classifiers were trained as in the previous experiments. Robustness
was evaluated on the e-mails in D3. Results are reported in Sect. 5.

5 Experimental results

The results of our experiments are reported in terms of AUC10% as a function of
the attack strength m. Since the features are Boolean, we measured the attack
strength m as the maximum number of features which can be modified. Ac-
cording to this measure, a classifier is more robust than another if it exhibits a
higher AUC10% value for the same value of m. Note that the true positive (TP)
classification rate of a classifier decreases as the attack strength m increases,
and so does the AUC10% value. As a limit case, beyond some m value all the
modified malicious testing samples are labelled as legitimate. Consequently, the
TP rate equals zero for any FP value and the corresponding AUC10% equals zero
as well. We also report a measure of the evenness of the feature weights assigned
by the classifiers, which was proposed in [7], defined as the ratio of the sum of
the top K absolute weight values to the sum of all the n absolute weight values,
for K = 1, . . . , n:

F (K) =

(
K∑

i=1

|w(i)|

)
/

(
n∑

i=1

|w(i)|

)
(3)

where |w(1)|, . . . , |w(n)| are the absolute weight values sorted in decreasing order.
The weight w0 is disregarded since it does not affect the AUC10% value. When all
weights are equal, F (K) = K, while as the weight distribution become uneven,
F (K) approaches 1 for any K value.

Experiment 1. The results obtained with text classifiers are shown in Fig. 1.
We found that the robustness of MCSs significantly increased for increasing en-
semble size with RSM (especially for a low feature subset size), while no signifi-
cant changes were observed with bagging. This result provides some support the
one reported by the authors in [14]. Due to lack of space, only the results for the

2 http://spamassassin.apache.org/tests_3_2_x.html

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

A
U

C
1
0
%

m

! "!!! #!!!! #"!!!
!

!$#

!$%

!$&

!$'

!$"

!$(

!$)

!$*

!$+

#

,

-
./
0
12
3
4
53
65
13
7
5,
5/
8
9
$5
:
;
2<
=
15
>
/
?@
;
9

5

5

AB5C!$!++"D

AB!BEF5C!$!++)D

AB!8/<<24<5C!$!++)D

EGF5C!$!++*D

EGF!BEF5C!$!++*D

EGF!8/<<24<5C!$!++*D

0 2 4 6 8 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

A
U

C
1
0
%

m

! "!! #!! $!! %!! &!!
!

!'"

!'#

!'$

!'%

!'&

!'(

!')

!'*

!'+

"

,

-
./
0
12
3
4
53
65
13
7
5,
5/
8
9
'5
:
;
2<
=
15
>
/
?@
;
9

5

5

AB5C!'!+*)D

AB!BEF5C!'!+**D

AB!8/<<24<5C!'!+*)D

EGF5C!'!+*)D

EGF!BEF5C!'!++"D

EGF!8/<<24<5C!'!++D

E7/HI99/99245C!'!+*(D

J4263.H5:;2<=195C!'!+%+D

Fig. 1. AUC10%(m) (left) and F (K) (right) for single LR and SVM classifiers, and for
bagging and RSM with LR and SVM as base classifiers. Top: text classifiers (exp. 1);
bottom: SpamAssassin (exp. 2). For the latter, results obtained with default and uni-
form weights are also reported. The AUC10% value at m = 0 is reported also in the
legend. Results for the MCSs are averaged over 5 runs (standard deviation is not re-
ported since it is negligible). Note that the AUC10% drops to zero when the attack
strength becomes so high that all the modified malicious testing samples are labelled
as legitimate, and thus the TP rate equals zero for any FP value.

largest considered ensemble size (10) are reported. Similarly, the robustness of
the RSM method significantly increased as the size of feature subsets increased,
while no significant difference was observed with bagging for different training
set sizes. Due to lack of space, only results corresponding to the highest consid-
ered feature subset size in RSM (80%) and training set size in bagging (100%)
are reported. Let us compare bagging and RSM with a single classifier. First,
Fig. 1 shows for m = 0 (namely, on the original testing set) the AUC10% value of
bagging and RSM was nearly the same as the one of the corresponding individ-
ual classifiers trained on the original training set. This means that bagging and
RSM did not improve the performance of the individual classifiers. However, for
m > 0 (namely, when the classifiers are under attack) both bagging and RSM
allowed to obtain more even weight distributions with respect to the individual
classifiers, and also exhibited a higher robustness. This result supports our main
hypothesis, namely that bagging and RSM result in more uniform weight values
than a single classifier (Sect. 3). This result is interesting also because it shows
that although MCSs did not improve classification accuracy with respect to in-
dividual classifiers, they nevertheless allowed to improve robustness. It can also

be noted that in this case using a MCS did not increase the computational cost
at classification phase, since the discriminant function of the MCS was linear as
the one of the single classifier.

Experiment 2. The results obtained with the SpamAssassin filter as a lin-
ear classifier are reported in Fig. 1. On the basis of the results of the previous
experiments, we considered only ensembles of 10 base classifiers, and feature
subsets of 80% of the whole feature set for RSM. We also report the results ob-
tained by SpamAssassin as a single classifier, both using its default weight values
and using uniform weight values, equal to either +1 (for features associated to
characteristics of spam e-mails, see above) or to −1. As expected, SpamAssas-
sin with uniform weights attains the highest robustness (see Fig. 1, bottom).
However, it does not exploit any information about the discriminant capability
of the features, and therefore it exhibits the worst performance on the origi-
nal testing set without attacks (AUC10% for m = 0). An interesting result is
that weights obtained by the LR and SVM classifiers slightly outperformed the
default SpamAssassin weights for m = 0, while the default values exhibited a
higher robustness for m > 0, namely when the classifiers were under attack. This
provides evidence that the default weights, which were manually set by SpamAs-
sassin developers, are actually capable to improve its robustness under attack.
In particular, we observed that the LR and SVM learning algorithms assigned
higher weights to the most discriminant features (on training samples), which
turned out to be the ones related to the text classifier included in SpamAssassin.
This guaranteed to achieve higher performances when the filter was not under
attack, but also undermined its robustness under attack. The corresponding de-
fault weight values were indeed lower than the ones assigned by the LR and
SVM classifiers. As in the previous experiments, Fig. 1 also shows that the use
of MCSs did not improve the classification accuracy when the classifiers were not
under attack, but it allowed to improve the robustness when the classifiers were
under attack, with the only exception of bagging with the SVM base classifier. It
is interesting to note that the default SpamAssassin weights exhibited a higher
robustness than bagging and RSM, besides than single classifiers.

6 Conclusions

While MCSs are mainly used to improve classification accuracy, inspired by [6,
7] we argued that methods like bagging and RSM could also result in improv-
ing robustness in adversarial classification tasks against attacks based on some
knowledge of the classifier’s discriminant function, due to a potential side effect
consisting in giving more uniform weights to the features with respect to a single
classifier. Reported experiments performed on a real spam filtering task, using
text classifiers and a real spam filter, provided evidence that this intuition is
correct. In particular, our experiments showed that, even in cases when bagging
and RSM did not improve the performance of a single classifier when they are
not under attack, they turned out to be significantly more robust under attack.
These results provide a first sound motivation to the application of MCSs in

adversarial classification tasks, other than the intuitive and qualitative consid-
erations that have motivated their use so far, and thus open a new and relevant
area of research for MCSs.

References

1. Kittler, J., Hatef, M., Duin, R.P., Matas, J.: On combining classifiers. IEEE
Trans. Pattern Analysis and Machine Intelligence 20(3) (1998) 226–239

2. Perdisci, R., Gu, G., Lee, W.: Using an ensemble of one-class svm classifiers to
harden payload-based anomaly detection systems. In: Int. Conf. Data Mining
(ICDM), IEEE Computer Society (2006) 488–498

3. Giacinto, G., Roli, F., Didaci, L.: Fusion of multiple classifiers for intrusion detec-
tion in computer networks. Patt. Rec. Lett. 24 (2003) 1795–1803

4. Ross, A.A., Nandakumar, K., Jain, A.K.: Handbook of Multibiometrics. Springer
(2006)

5. Dalvi, N., Domingos, P., Mausam, Sanghai, S., Verma, D.: Adversarial classifica-
tion. In: ACM Int. Conf. Knowledge Discovery and Data Mining (2004) 99–108

6. Globerson, A., Roweis, S.T.: Nightmare at test time: robust learning by feature
deletion. In: Int. Conf. Machine Learning (2006) 353–360

7. Kolcz, A., Teo, C.H.: Feature weighting for improved classifier robustness. In:
Sixth Conf. Email and Anti-Spam (CEAS), Mountain View, CA, USA (2009)

8. Breiman, L.: Bagging predictors. Machine Learning 24(2) (1996) 123–140
9. Ho, T.K.: The random subspace method for constructing decision forests. IEEE

Trans. Pattern Analysis and Machine Intelligence 20(8) (1998) 832–844
10. The Apache SpamAssassin Project, http://spamassassin.apache.org/
11. Hershkop, S., Stolfo, S.J.: Combining email models for false positive reduction. In:

Proc. ACM Int. Conf. Knowledge Discovery in Data Mining, ACM (2005) 98–107
12. Lynam, T.R., Cormack, G.V., Cheriton, D.R.: On-line spam filter fusion. In:

Proc. Int. ACM SIGIR Conf. on Res. and Dev. Inf. Retr., ACM (2006) 123–130
13. Tran, T., Tsai, P., Jan, T.: An adjustable combination of linear regres-

sion and modified probabilistic neural network for anti-spam filtering. In:
Int. Conf. Patt. Rec. (2008) 1–4

14. Biggio, B., Fumera, G., Roli, F.: Evade hard multiple classifier systems. In: Okun,
O., Valentini, G., eds.: Supervised and Unsupervised Ensemble Methods and their
Applications. Vol. 245 Studies in Comp. Int. Springer-Verlag, (2009) 15–38

15. Biggio, B., Fumera, G., Roli, F.: Adversarial pattern classification using multiple
classifiers and randomisation. In: Joint IAPR Int. Workshop on Structural and
Syntactic Pattern Recognition, Vol. 5342 LNCS, Springer-Verlag (2008) 500–509

16. Biggio, B., Fumera, G., Roli, F.: Multiple classifier systems for adversarial clas-
sification tasks. In: Multiple Classifier Systems. Vol. 5519 LNCS, Springer (2009)
132–141

17. Barreno, M., Nelson, B., Sears, R., Joseph, A.D., Tygar, J.D.: Can machine learn-
ing be secure? In: Proc. 2006 ACM Symp. Information, computer and communi-
cations security (ASIACCS 06), New York, NY, USA, ACM (2006) 16–25

18. Lowd, D., Meek, C.: Adversarial learning. In: Proc. 11th ACM SIGKDD
Int. Conf. Knowledge Discovery and Data Mining (2005) 641–647

19. Drucker, H., Wu, D., Vapnik, V.N.: Support vector machines for spam categoriza-
tion. IEEE Trans. Neural Networks 10(5) (1999) 1048–1054

20. Stern, H.: A survey of modern spam tools. In: 5th Conf. Email and Anti-Spam
(CEAS), Mountain View, CA, USA (2008)

