Evade Hard Multiple Classifier
Systems

Battista Biggio, Giorgio Fumera, and Fabio Roli

Abstract E

xperimental and theoretical evidences showed that multiple classifier sys-
tems (MCSs) can outperform single classifiers in terms of classification accu-
racy. MCSs are currently used in several kinds of applications, among which
security applications like biometric identity recognition, intrusion detection
in computer networks and spam filtering. However security systems operate
in adversarial environments against intelligent adversaries who try to evade
them, and are therefore characterised by the requirement of a high robustness
to evasion besides a high classification accuracy. The effectiveness of MCSs
in improving the hardness of evasion has not been investigated yet, and their
use in security system is based mainly on intuitive and qualitative motiva-
tions, besides some experimental evidence. In this chapter we address the
issue of investigating why and how MCSs can improve the hardness of eva-
sion of security systems in adversarial environments. To this aim we develop
analytical models of adversarial classification problems (also exploiting a the-
oretical framework recently proposed by other authors), and apply them to
analyse two strategies currently used to implement MCSs in several applica-
tions. We then give an experimental investigation of the considered strategies
on a case study in spam filtering, using a large corpus of publicly available
spam and legitimate e-mails, and the SpamAssassin widely used open source
spam filter.

Key words: Multiple classifier systems; adversarial classification; hardness
of evasion; spam filtering.

Department of Electrical and Electronic Engineering, University of Cagliari, Piazza d’Armi,
09123 Cagliari, Italy {battista.biggio, fumera, roli}@diee.unica.it

2 B. Biggio, G. Fumera, F. Roli

1 Introduction

During the past ten years multiple classifier systems (MCS) have become an
established approach to design pattern classification systems. A large body
of both experimental and theoretical evidence shows that MCSs can outper-
form a single classifier in several real applications, in terms of classification
accuracy (see for instance [8, 6]). In particular, several authors showed that
MCSs can allow to improve the detection capability also in security appli-
cations like biometric authentication and intrusion detection in computer
networks [4, 11]. It is also worth noting that the MCS classifier architecture
is also used in commercial and open source spam filters. However, attaining
a high classification accuracy or detection capability is not sufficient in secu-
rity applications, and in particular in so-called adversarial environments, in
which a security system faces an intelligent, adaptive adversary who exploits
the available or acquired knowledge about the system just to evade it. Typical
examples of this kind of applications are intrusion detection in computer net-
works and spam filtering. A crucial issue in this kind of applications, besides
detection capability, is the hardness of evasion, which can be qualitatively
defined as the effort required to the attacker to evade the system. While the
effectiveness of MCSs in improving the detection capability has been deeply
investigated so far, no work has formally analysed yet their effectiveness in
improving the hardness of evasion of a classification system, although MCSs
are widely used in adversarial classification tasks as mentioned above. Actu-
ally, the issue of the hardness of evasion has been addressed only recently in
the machine learning and pattern recognition literature, often with respect to
specific tasks, classification systems and type of attacks [5, 7] (for instance,
the so-called good words attack against the text classifier used in most spam
filters), and only in a few works under a more general perspective [1, 9, 3]
aimed at developing analytical models of adversarial classification problems.
With regard to the use of MCSs explicitly for the specific goal of improving
the hardness of evasion, to our knowledge it was proposed by some authors
for biometric tasks (see for instance [11]), but only by Perdisci et al. [10] for
intrusion detection tasks, while no works considered MCSs for this specific
goal in spam filtering tasks.

The aim of this chapter is to make a first step towards a better under-
standing of why and how MCSs can improve the hardness of evasion of a
security system in adversarial classification problems, with respect to the use
of a single classifier. We focus in particular on two strategies commonly used
to design MCSs, and applied also in security applications. The first strategy
is often applied when a set of heterogeneous features is available (as happens
for instance in multimodal biometric identity verification tasks). In this case
it could be better to combine different classifiers trained on disjoint and het-
erogeneous subsets of features (for instance, a face classifier and a fingerprint
classifier) instead of designing a single, “monolithic” classifier based on all
the available features [8]. This strategy is also used when the feature set is

Evade Hard Multiple Classifier Systems 3

very large (and not necessarily heterogeneous), since it is known that it can
help avoiding over-fitting. In this chapter we investigate whether such strat-
egy can be more effective than the use of a single classifier also in terms of
hardness of evasion, in adversarial classification tasks.

The second strategy we consider is commonly used to update real spam
filters as new kinds of attacks are detected, and was proposed in [10] explic-
itly for improving the hardness of evasion in intrusion detection tasks. This
strategy consists in adding detectors (often, made up as classifiers) based on
new features to a classification system. In this chapter we investigate whether
this approach can be really effective to improve the hardness of evasion in
adversarial classification tasks, trying to provide some argument more formal
than the intuitive ones proposed in [10]. To this aim, we will exploit a the-
oretical framework proposed by Dalvi et al. [3] for adversarial classification
problems.

Then, to experimentally investigate the above issues we consider a spam
filtering task as a case study, using a large corpus of publicly available spam
and legitimate e-mails, and a real and widely used open source spam filter,
SpamAssassin.

The chapter is organised as follows. In section 2.1 we give an overview of
the use of MCSs in security applications, and of the theoretical framework
proposed in [3] for adversarial classification problems. In section 3 we de-
scribe how we model an adversarial learning task in which the classifier is a
MCS using the framework in [3], and how we model such kinds of tasks to
investigate the effectiveness of a MCS against a single classifier, when both
classifiers use the same feature set. The experimental results are reported in
section 4.

2 Related work

In this section we first give an overview of past work on MCSs for security
applications, and then summarise a formal framework proposed in [3] to
model adversarial classification problems. Such framework will be exploited in
section 3.1 to analyse one of the two strategies mentioned in the introduction
for improving the hardness of evasion of a security system.

2.1 Previous works on multiple classifiers for security
applications

The use of MCSs to improve the detection accuracy has been recently pro-
posed by several authors for security applications, and in particular biomet-
ric authentication and verification [8, 11, 6] and intrusion detection in com-

4 B. Biggio, G. Fumera, F. Roli

puter networks [4]. A common scenario in these applications is the availability
of heterogeneous features coming from distinct pattern representations (for
instance, features extracted from face and fingerprint images in biometric
tasks). In this case it is natural to design a detection system based on the
combination of different classifiers trained on disjoint feature subsets cor-
responding to the different pattern representations. This is a well known
approach in the MCS field: if different sets of heterogeneous (and possibly
loosely correlated) features are available, designing a MCS as described above
can be simpler and more effective than designing a single classifier using all
the available features (see for instance [8]). Moreover, if the overall number of
features is large, a single classifier could be more prone to over-fitting than a
MCS. Another motivation in the context of intrusion detection systems was
pointed out in [4]: the ensemble approach “reflects the behaviour of network
security experts, who usually look at different traffic statistics in order to
produce reliable attack signatures.”

The above arguments support the use of classifier ensembles to improve the
effectiveness of security systems, in terms of attaining high detection rates.
MCSs have also been explicitly proposed to improve the hardness of evasion in
biometric tasks (see for instance [11]). To our knowledge, the only work which
explicitly proposes MCSs to this aim for intrusion detection tasks is [10], while
we are unaware of any work for spam filtering tasks. The approach followed in
the mentioned works to improve the hardness of evasion is to add to a MCS
one or more classifiers trained on new and different features. The motivations
for biometric applications are very intuitive: for instance, in [11] it is claimed
that using different biometrics like face, fingerprints, and speech allows to
discourage attempts to evade a verification system, since this would require
the construction of different kinds of fake biometric traits instead of only
one. Similar qualitative arguments are given in [10] for intrusion detection
systems: combining classifiers trained on different feature spaces “forces the
attacker to devise a mimicry attack that evades multiple models of normal
traffic at the same time, which is intuitively harder than evading just one
model”. We point out that, besides experimental evidences, all the above
motivations in favour or the use of MCSs for the specific goal of improving
hardness of evasion are only intuitive and qualitative, and are not based on
formal and more compelling arguments.

Looking to real security systems, it turns out that the design of many
spam filters and intrusion detection systems follows the approach based on
combining an ensemble of detectors. Consider for instance two well-known
open source systems: the SpamAssassin spam filter (http://spamassassin.
apache.org) and the Snort intrusion detection system (http://www.snort.
org/). Both SpamAssassin and Snort consist of a set of “tests” which check
for different characteristics of input patterns (respectively e-mails and net-
work packets) to detect the presence of “signatures” denoting a malicious
origin of the pattern. Tests are often focused on specific signatures of known
attacks. They can be of very different kinds, ranging from simple and fixed

Evade Hard Multiple Classifier Systems 5

feature detectors (like a keyword detector in a spam filter) to arbitrarily
complex classifiers (like the text classifiers used in spam filters, also know as
“bayesian classifiers” in the spam filtering jargon). The outputs of all tests
are then properly combined to obtain a decision on the input pattern (either
“legitimate” or not). In the case of SpamAssassin, a score (a real number)
is associated to each test. The scores of the tests which are satisfied by an
e-mail are first summed up, and then the e-mail is labelled as spam, if the
overall score exceeds a predefined threshold; otherwise the e-mail is labelled
as legitimate. In the case of Snort, a logic OR is computed on the boolean
outcomes of all tests (in other words, a network packet is considered as an
attack, if it satisfies at least one of the tests). The SpamAssassin and Snort
architectures make it easy to add new tests based on different features as
new kinds of attacks come up, and to delete existing tests related to attacks
that are no more used. These architectures are supported by experience and
intuition that suggest the designer of these kinds of security systems that the
characteristics which allow detecting malicious patterns can be very differ-
ent and heterogeneous, and can change over time due to new tricks used by
spammers and hackers to defeat spam filters and intrusion detection systems.

We conclude by pointing out again that so far the hardness of evasion
of security systems based on MCSs for adversarial classification problems, in
particular for intrusion detection and spam filtering tasks, has been motivated
only with intuitive and qualitative arguments.

2.2 A theoretical framework for adversarial
classification problems

As explained above, the few works that proposed so far the use of MCSs for
improving the hardness evasion in adversarial classification tasks were based
only on informal end empirical motivations. This is actually true also for
most works that proposed classification systems based on single classifiers. As
mentioned in the introduction, just a few works addressed so far the hardness
of evasion of machine learning systems under a more general perspective
[1, 9, 3], in particular to formally analyse it. In this section we focus on the
work by Dalvi et al. [3], who developed a formal framework (the only one so
far, to our knowledge) for adversarial classification problems. In the following
we summarise this framework, which will be applied in section 3 to model
and analyse one of the MCS-based strategies considered in this chapter for
improving the hardness of evasion (namely, adding classifiers trained on new
features).

When machine learning or pattern recognition techniques are used in appli-
cations like spam filtering, intrusion detection, biometric authentication, etc.,
their task can be formalised as a two-class classification problem. Denoting
with y the class label, instances belong either to a positive class made up of

6 B. Biggio, G. Fumera, F. Roli

malicious instances (y = +), or to a negative class made up of innocent or le-

gitimate instances (y = —). Instances are represented as vectors of N feature
values, and are considered as random variables X = (X1,...,X;, ..., Xn).
A realisation of such random variable is denoted as = (z1,...,%i,...,TN),

where z; is a possible value of the feature X;. It is assumed that instances
are generated i.i.d. according to a given distribution P(X), which can be
rewritten as P(X) = P(X|+)P(+) + P(X|—)P(—). The feature space X is
defined as the set of all possible realisations of X.

The framework in [3] considers tasks in which the adversary can modify
positive instances (the ones generated by him) at the operation phase to
make them being misclassified as legitimate by the classifier, but it can not
modify any negative instance nor positive instances belonging to the training
set. This happens in several real applications. For instance, if a spam filter
is trained off-line on a hand-labelled corpora of e-mails, spammers can only
modify their own spam e-mails to evade the filter, but can not modify legit-
imate e-mails nor any spam e-mail in the training set. In other cases, like
intrusion detection systems trained online, the adversary can modify also
training instances: the model in [3] can not be directly applied to these kinds
of tasks.

In [3] it is further assumed that the classifier and the adversary act ac-
cording to given utility and cost functions. Denoting with yc(z) the decision
function of the classifier, whose output is intended to be the label assigned
to the instance z, the classifier’s utility function is denoted as Uc(ye,y), and
represents the utility accrued by assigning to class ye(x) an instance x be-
longing to class y. It is reasonable to assume that classifier’s utility is positive
for correctly classified instances and negative for misclassified ones, that is,
Uc(+,+4) >0, Uc(—,—) >0, Uc(+,—) < 0 and Uc(—,+) < 0. The cost for
the classifier is assumed to be the one incurred for measuring feature values.
In the following the cost for measuring the i-th feature of an input instance
is denoted as V;. The expression of the expected utility over the distribution
P(z,y) (the joint probability of pattern = being generated with true label y)
can be obtained taking into account that the adversary acts by first generat-
ing a (positive) instance with a corresponding feature representation x, and
then possibly modifying it to some different instance z’ (if deemed necessary),
with the aim of evading the classifier. Such modification is denoted as a func-
tion A(x). For example, spammers could add words which look legitimate to
the body text of a spam e-mail, and this could result in a different e-mail
feature representation (depending on the features used by the classifier). It
follows that the expected utility for the classifier is given by:

N

Uo= Y Pl@yllUclye(Al),y) - Vi, (1)

(z,y)€EXXY i=1

where Y = {4+, —} (note that, by the above assumptions, A(x) =z if y = —,
namely for each negative instance).

Evade Hard Multiple Classifier Systems 7

The adversary’s utility function is denoted similarly with U4 (y.,y). In this
case a reasonable assumption is that Ux(y.,y) takes on a positive value for
positive instances misclassified by the classifier as legitimate (Ua(—,+) > 0),
a negative value for correctly classified positive instances (Ua(+,+) < 0),
and a zero value for negative instances (Ua(—, —) = Ua (4, —) = 0), whatever
the label assigned by the classifier (in other words, the adversary’s utility is
not affected by the correct or incorrect classification of negative instances).
The cost for the adversary is the one incurred for modifying an instance
x, according to the function A(x). It is assumed that the cost is given by
W(z, A(z)) = Zivzl Wi(z, A(z)), being W; the cost for modifying the i-th
feature. Of course, W; = 0 if the i-th feature is not changed, W; > 0 otherwise.
The expected utility for the adversary is thus:

Us= Y Pla,yUalye(A@),y) - Wz, A))]. (2)

(z,y)€EXXY

Using the above model, the adversarial classification problem is formu-
lated as a game between classifier and adversary, in which the two players
make one move at a time. A move by the classifier consists in choosing a
decision function ye(+) to maximise his expected utility, taking into account
both the training set and any knowledge it may have about the strategy A(-)
chosen in the previous move by the adversary. Analogously, a move by the
adversary consists in choosing a strategy .A(-) to maximise his own expected
utility (eq. 2), taking into account the available knowledge about the decision
function chosen by the classifier in the previous move. Although game theory
could in principle be applied to find the optimal sequence of moves by both
players according to their utility and cost functions, it was shown in [3] that
this is computational intractable, and anyway it requires the knowledge of the
distribution P(z,y), which is unrealistic. Therefore, a simplified single-shot
version of the game was considered in [3]. Initially, the classifier constructs a
decision function using a given training set, assuming it is untainted. Then
the adversary chooses his strategy A(-), assuming he has perfect knowledge
of the utility and cost functions of the classifier, and also of his classifica-
tion algorithm and the training set used. Finally, classifier moves again by
choosing a new decision function, assuming he has perfect knowledge of the
adversary’s utility and cost functions, and that he also knows that the ad-
versary has just made his move based on perfect knowledge on the classifier.
Under these assumptions, the optimal adversary’s strategy for choosing A(-)
turns out to be the following: for each positive instance x, the adversary has
to find a modification 2’ which maximises the corresponding summand in the
expression of the adversary’s expected utility (2):

Alz) = armggl)?X[UA(yc(C(w'), +) = W(x,a")]. ()

8 B. Biggio, G. Fumera, F. Roli

Given the above definition of the adversary’s utility and cost functions, it is
easy to see that the adversary will change any given instance x, only if it is
correctly classified by the classifier as positive, and if there is any instance
A(x) # = which is misclassified by the classifier as negative, and the modifi-
cation cost W(z, A(z)) is lower than the utility gain Ua(—,+) — Ua(+,+).
Otherwise, the best strategy is to leave the instance x unchanged, namely
A(x) = .

In [3] the above framework was applied to find the optimal strategies of the
adversary and the classifier, when the classifier is a Naive Bayes. Experiments
on a spam filtering task quantitatively showed that the classifier performance
can significantly degrade, if the adversarial nature of this task is not taken
into account, while an adversary-aware classifier can perform much better.

The assumption that the adversary and the classifier have perfect knowl-
edge of each other is rather unrealistic in practical applications, as well as
the assumption that their behaviour can be modelled in terms of utility func-
tions whose expected value they aim to maximise. Despite this, we point out
that this framework is the first one proposed to model adversarial learning
problems in the machine learning field, and it is thus worth taking it into
account to formally analyse strategies to improve the hardness of evasion as
the ones considered in this chapter.

3 Are multiple classifier systems harder to evade?

In this section we develop formal models of adversarial classification prob-
lems in which the classification system is made up of an MCS, with the aim
of investigating whether MCSs could improve the hardness of evasion. In
particular, the model in section 3.1 is based on the framework developed in
[3].

3.1 Adding features to a classification system

In this section we consider a strategy proposed by several authors to design
classifiers for different security applications, and commonly used in real secu-
rity systems, as explained in section 2.1. The strategy consists in adding to a
given classifier ensemble new classifiers trained on different features. We focus
in particular on a simple kind of combining function, which consists in thresh-
olding the weighted sum of the outputs provided by each classifier. The reason
is that this combining function is equivalent to the ones commonly used in
spam filters and intrusion detection systems, as the SpamAssassin and Snort
software described in section 2.1. In the following we apply the framework of
[3] to model a classifier based on this strategy, and analyse whether and how

Evade Hard Multiple Classifier Systems 9

such strategy can allow to improve the hardness of evasion of the classifier,
according to this framework.

We consider a classifier ensemble made up of N classifiers trained on dif-
ferent feature subsets. We denote with s;(z) the output provided by the i-th
classifier for the instance = (2 can be considered the whole feature vector,
while each classifier uses only a subset of these features), and with ¢ the
decision threshold. The decision function we consider can be defined as:

. N
yc(l‘) _ {+7 if ZiZI s > t, (4)

-, lefvzl s; < t.

We also consider V; and W;(x, A(z)) as the cost incurred respectively by the
classifier for measuring the values of the i-th feature set of the instance x,
and by the adversary for modifying the same features of x.

In the framework of [3] the classifier strategy against the adversary leads
to choose a new decision function at each move. To apply the framework
of [3] to our case, we add the constraint that the new decision function is
obtained by adding one or more new classifiers to the previous ensemble. As
in [3], we assume that the initial classifier ensemble is trained on a given
training set of untainted instances, namely A(z) = z. Then the adversary
reacts by devising a strategy A(z), which is likely to decrease the classifier
effectiveness. Next, some new classifiers are added to the previous classifier
ensemble. The adversary can in turn react again by devising a new strategy
to defeat the new version of the MCS, and so on. The question we will try to
answer is: does adding new classifiers to a previous ensemble makes it harder
to evade?

Let us now define in details the adversary strategy, namely the opti-
mal way in which the adversary should choose the function A(x) against
a given ensemble of N classifiers. To this aim, we assume that the adversary
knows the feature set used by each of the individual classifiers, the score
si(x),i =1,..., N provided by each individual classifier for any positive in-
stance x, and the threshold ¢. For the sake of simplicity, we also assume that
the cost W;(x, A(x)) for modifying the i-th feature set is equal to the ab-
solute difference between the corresponding scores s;(x) and s;(A(z)). This
means that the total cost W(z, A(z)) equals the Manhattan distance in the
N-dimensional score space between the corresponding score vectors. In other
words, the higher the score reduction the adversary would like to attain, the
more the changes he has to make to his positive instance. We point out that
this is only a simplifying assumption, since in practice a given reduction of
the overall score could be attained by different modifications to the same in-
stance at the expense of a different cost incurred by the adversary. However,
modelling this fact is much more complex, without any specific assumption
about the nature of instances, of the features used by the classifier and of
the kinds of attacks used by the adversary. It should be noted that an as-
sumption similar to ours about the cost of modifying an instance in a given

10 B. Biggio, G. Fumera, F. Roli

feature space was made in [9]: in that work, the cost was assumed to be a
function of the distance between x and A(x) in the feature space.

The optimal strategy of the adversary in [3] is defined by eq. 3. In our
case, denoting with AU 4 the difference Ug(—, +) —Ua(+, +), with the above
definition of the adversary’s cost function the optimal strategy against an
ensemble of IV classifiers can be rewritten as follows:

' #x,if Fa'ye(a)) = —, AU, > W(z,2'),
Az) = o’ = argmax ey AUA — W(z,2"), (5)
T, otherwise.

The above optimal strategy can be rephrased as finding, for any given in-
stance x which is correctly classified as positive by the classifier, namely
Eﬁil si(xz) > t, an instance A(z) which is misclassified as negative by the
classifier, namely Zfil si(A(z)) < t, and for which the utility gain AU4 ex-
ceeds the cost for making the modification, which by the above assumptions
is given by:

N
Wz, A@)) = Y |si(2) = si(Alx)]. (6)
i=1

If no such instance can be found, then x is left unchanged. It is not difficult
to see that the minimum cost the adversary has to incur so that the modified
instance is misclassified as negative equals the difference between the total
score given to = by the classifier and the decision threshold ¢: Zf\il si(x) —t.

It is now possible to give a formal explanation, according to the frame-
work in [3], of the reasons why adding new classifiers to a given ensemble
could improve the hardness of evasion, as well as the detection capability. We
consider the simplest case in which the previous classifiers and the decision
threshold ¢ are left unchanged at each move. A consequence of adding M new
classifiers (M > 1) to an existing ensemble of N classifiers is that the score of
any positive instance could increase, under the reasonable assumption that
the individual classifiers are well trained. In particular, consider the optimal
strategy A(z) against N classifiers. As seen above, when this strategy leads
the adversary to modify an instance x to a different instance A(x) # =,
this allows to evade the classifier. Denoting with s*(z) the score provided
by an ensemble of k classifiers, this means that sV (z) = Zfil si(A(z)) < t.
However, the modified instance obtained with the strategy devised against
N classifiers is not guaranteed to evade a new ensemble comprising M new
classifiers. Indeed the new score sV +M(z) will be given by the sum of the
previous score and of the scores of the new classifiers, s () + ZiV:JJFVJ\il si(x),
which could exceed ¢. This means that the optimal strategy of the adversary
against N classifiers is not guaranteed to be optimal against M + N classifiers.
Accordingly, the detection capability can improve by adding new classifiers.
Moreover, the evasion cost could increase by adding new classifiers. Indeed,
if the score for some positive instance x correctly classified by the new classi-

Evade Hard Multiple Classifier Systems 11

fier ensemble increases from s (x) to sV +M (x) > sV (x), such increase could
make the difference sV (z) — ¢ larger than the utility, Ua(—,+), that the
adversary would gain by modifying = so that it is misclassified as negative.
This implies that there could be some positive instances that the adversary
can afford to modify to evade IV classifiers, but not to evade N+ M classifiers.
This means that the classifier has become harder to evade.

In the above model it is assumed that the adversary can modify only
positive instances, and the analysis was focused only on the classifier’s de-
tection capability on positive instances (namely, on the false negative error
rate). Before concluding this section it is worth discussing also the possible ef-
fects of adding classifiers, to the classification accuracy on negative instances
(the false positive error rate). Under the same reasonable assumption above
that the individual classifiers are well trained, a negative instance x which
is correctly classified as negative by an ensemble of N classifiers (namely,
sN(z) < t) is likely to be classified as negative also by an ensemble of N + M
classifiers, if the sum of the new scores Zf;ﬂ%_l s'(x), is lower than t — sV (x).
Moreover, instances erroneously classified as positive by N classifiers (namely,
sN(z) > t) could be correctly recognised as negative by a larger ensemble, if
Zfi}%l s'(x) is negative and lower than t — s ().

To sum up, the above analysis provides a first, formal support to the
strategy of adding new classifiers trained on different features to a given
classifier ensemble, to improve both the detection capability and the hardness
of evasion. In section 4.1 we will give an experimental evaluation on a case
study related to spam filtering.

3.2 Splitting features across an ensemble of classifiers

The second MCS-based strategy we consider is a design approach applied in
several applications to simplify the classifier design and to improve classifi-
cation accuracy, when the feature set is very large or is made up of heteroge-
neous feature subsets. The approach consists in combining different classifiers
trained on disjoint feature subsets, instead of designing a single, “monolithic”
classifier based on all the available features. It can be implemented naturally
on heterogeneous features: a typical example is the combination of a face clas-
sifier and a fingerprint classifier in biometric tasks. The issue we address is the
following: could this design approach be exploited to improve the hardness
of evasion of a security system in adversarial classification tasks?

In this chapter we try to give a first answer to this question, without
focusing to any specific application. We will not apply the model in [3] as
made for the MCS-based strategy analysed in section 3.1, since in this case
we are not analysing a defence strategy, but we are comparing two different
classifier design approaches. We develop instead a simple, general model of a
classification system based on these two classifier architectures (either a single

12 B. Biggio, G. Fumera, F. Roli

classifier trained on a given feature set, or an ensemble of classifiers trained
on disjoint subsets of the same feature set), and a method for evaluating the
corresponding hardness of evasion.

We first assume that a fixed feature set x1,...,x, is available, and that
all the features are binary and take on the values 0 and 1. Without loosing
generality we assume that the value 1 of any feature denotes the presence of
some “malicious” characteristic in the input instance, while a 0 value denotes
its absence. In the case of a single classifier, denoting with x a feature vector
and with ye(x) the decision function, we assume that ye(x) is a thresholded
weighted sum of the input features x1, ..., x,, with weights wq, ..., w,:

_ +, if Z?:l Wiy > ta
yc($> o { - if Z?:l wixr; < t. (7>

Note that this kind of decision function, as well as the above assumption
on the features, fit several real classification systems for security tasks, like
SpamAssassin and Snort.

In the case of a MCS made up of N classifiers trained on N disjoint
subsets of the same n features, we assume that the individual classifiers have
the same kind of decision function (7). As combining function we consider
the logical OR between the N boolean outputs of the individual classifiers,
where the logical value true is assumed to denote the positive class y =
+ (in other words, for an input pattern being labelled as positive by the
MCS, it is sufficient that at least one of the individual classifiers labels it
as positive). We consider a non-linear combining function because a linear
one (a linear combination of the soft outputs of the individual classifiers)
would lead to the same kind of decision function as the one of the monolithic
classifier (since also the decision functions of individual classifiers is linear).
We consider in particular the logical OR because of its simplicity, and because
it is particularly suited to keep the false negative error rate low. We remind
the reader that this combining function is used in Snort. In principle, it could
also be used to combine different spam filters or different intrusion detection
systems, whose outputs can be viewed as the features. Given that the value 1
of any feature denotes the presence of some “malicious” characteristic in the
input instance, it follows that all the weights of both the monolithic classifier
and the N individual classifiers of the ensemble are non-negative (because it is
reasonable that the presence of a “malicious” characteristic must not decrease
the overall score of a classifier). A scheme of the two classifier architectures
is shown in figure 1.

In the two classifier architectures above, the parameters to be set during
the training phase are the number of individual classifiers in the MCS, the
feature subset associated to each individual classifier, and the values of the
weights and of the decision thresholds in the decision functions of the linear
classifiers. These choices will affect the effectiveness of the classifiers. The
effectiveness has to be measured in terms of both the classification accuracy

Evade Hard Multiple Classifier Systems 13

X1 n
o 1
5,(x) = Zwixi,l
i=1
xn,,l
XN By
2 _ N
SN(x) = zwz‘ xi,N
i=1
an,N !

Fig. 1 The two classifier architectures considered in this section. A single, linear classifier
working on n features (top). N linear classifiers working on disjoint subsets of the same n
features, whose decisions are combined using the OR logical function (bottom).

and the hardness of evasion. Note that in adversarial classification problems
the classification accuracy should be intended as a “static” characteristic of
a classifier, in the sense that it is related to a fized strategy used by the
adversary. Such strategy can be considered as represented by the training
instances. The hardness of evasion measures instead how easy is for the ad-
versary to evade the classifier using one or more different specific strategies.
In other words, it measures how vulnerable the classifier is to specific kind
of attacks, different than the ones represented in the training set. Therefore,
when comparing different security systems both measures have to be taken
into account, as in the scheme of figure 2. Ideally, a security system should
be characterised both by a high accuracy ad a high hardness of evasion. In
practice a trade-off between the two goals could be needed.

The classification accuracy can be evaluated in terms of the false positive
and false negative classification rates. Usually, the suitable trade-off between
these misclassification rates is application-dependent. How to measure the
hardness of evasion is clearly application-dependent as well. In particular,
it could depend on the kind of classification system, on the knowledge the
adversary has about it, and on the kinds of attacks he could make. However
in this section we consider a measure of the hardness of evasion focused
on comparing the two classifier architectures we are interested in, without
making any specific assumption on the application. Concerning the adversary,

14 B. Biggio, G. Fumera, F. Roli

Accuracy || High accuracy, | High accuracy,

low hardness of | high hardness of
evasion evasion

Low accuracy,
high hardness of
evasion

Hardness of evasion

Fig. 2 An example of the two measures which should be used to evaluate the performance
of a classifier in a security system: the classification accuracy against a given strategy used
by the adversary (represented by training instances), and the hardness of evasion against
new kinds of attacks. Ideally, the classifier should exhibit both a higher accuracy and a
high hardness of evasion (green region in the accuracy-hardness of evasion plane).

we consider the worst case scenario for the classification system, as in the
framework in [3]: we assume that the adversary has full knowledge of the
classifier architecture, of the features and of the parameter values, and is
capable to evade any feature (namely, to turn the value of any feature from
1 to 0). We further assume that the adversary has to make the same effort to
evade any feature. We point out that this last assumption could not be true
in practice. However, taking into account different costs for evading different
features would make our model much more complex, which is out of the scope
of this chapter. Under the above assumptions, the hardness of evasion can be
defined as follows:

For a given feature set, the hardness of evasion is defined as the expected value of
the minimum number of features which have to be modified to evade the classifier.

Accordingly, a classifier A will be harder to evade than a classifier B, if the
average minimum number of features the adversary has to evade for evading
A is higher than for evading B. The whole classifier performance could thus
be measured in the accuracy-hardness of evasion plane of figure 2 by using a
proper combination of false positive and false negative classification rates in
the Y axis (note that, in this case, the accuracy increases for decreasing values
in the corresponding axis) and the average minimum number of features to
evade for evading the whole classifier in the X axis.

It is now possible to discuss, at least informally, whether and how the
MCS classifier architecture discussed above could be harder to evade than
the monolithic classifier. Consider a given positive instance whose feature
vector x is correctly classified by the monolithic classifier, namely, s(z) > ¢
(see figure 1). Under the above assumptions, to evade such classifier the
adversary will have to modify such instance to some instance with feature

Evade Hard Multiple Classifier Systems 15

vector ' with the aim of turning to 0 those features which exhibit in = a
value of 1 and are associated to the largest weights, until the overall output of
the classifier becomes lower than the threshold ¢: s(z’) < ¢. Instead, to evade
the MCS the adversary has to evade all individual classifiers which correctly
classify an instance as positive, since they are combined with the logical OR
function. Since the individual classifiers are assumed to implement the same
kind of decision function (7) as the monolithic classifier, the adversary will
have to apply the same strategy above against all the individual classifiers.
More precisely, let us denote with x,, the feature vector of the m-th individual
classifier. Assuming it correctly classifies z,, as positive (namely, S, () >
tm), the adversary will have to modify his original instance to some other
instance with feature vector 7, in which the features exhibiting in z,, a value
of 1 and are associated to the largest weights are turned to 0, until the overall
output of the m-th classifier becomes lower than the threshold ¢,,: sy, (2],) <
tm. We point out again that this has to be done for each individual classifier
which correctly classifies an instance as positive. It follows that a proper
choice of the feature subsets could force the adversary to evade on average
a higher number of features to evade a MCS with the above architecture,
than to evade the monolithic classifier. It should however be noted that the
kind of MCS considered in this section could exhibit a higher false positive
error rate than the monolithic classifier, since each individual classifier of the
MCS is trained with a smaller feature set, and an input instance is labelled as
positive if at least one individual classifier labels it as positive. Accordingly,
the attainable advantage of the MCSs in terms of hardness of evasion could
need to be traded-off for an increase in false positives. In the following section
we investigate experimentally the hardness of evasion of these two classifier
architectures on the same case study as the one considered for the MCS-based
strategy analysed in section 3.1.

4 A case study in spam filtering

In this section we apply the two formal models of section 3 to a case study
of a spam filtering task, to experimentally analyse the hardness of evasion
of the two corresponding MCS-based strategies considered in this chapter.
For our experiments we use the well known open source SpamAssassin spam
filter, whose architecture has been described in section 2.1, and a large and
publicly available corpus of real spam and legitimate e-mails.

We used the latest versions of SpamAssassin available at the time of car-
rying out our experiments: version 3.2.4 for the experiments in section 4.1,
and 3.2.5 for the ones in section 4.2. We used the filter configuration named
“bayes+net”, which includes all the available tests (several hundreds). The
outputs of all tests are binary (either 0 or 1). Nine of the tests are associated
to a text classifier with features corresponding to terms in the e-mails’ header

16 B. Biggio, G. Fumera, F. Roli

and body. The continuous-valued output of the text classifier is discretized by
default into nine disjoint intervals, each of which is associated with a binary
test. All the remaining tests consist in fixed feature detectors. SpamAssassin
is deployed with a default value for the weight of each test, and a default
value of 5 for the detection threshold. All these values can be modified by
the user. All the details about SpamAssassin, including the description of its
tests, can be found in http://spamassassin.apache.org/

The e-mail corpus we used is the TREC 2007 e-mail data set, available
at http://plg.uwaterloo.ca/~gvcormac/treccorpus07/. It is made up of
75,419 real e-mail messages, received by a mail server between April 2007
and July 2007, and contains 25,220 legitimate and 50,199 spam messages.

In sections 4.1 and 4.2 we describe the experiments aimed at evaluating
the hardness of evasion attainable respectively by adding new classifiers to a
classifier ensemble, and by using an ensemble of classifiers trained on disjoint
subsets of given feature set, instead of a single classifier trained on the whole
feature set.

4.1 Adding features to a spam filter

In this section we evaluate the hardness of evasion of the SpamAssassin filter,
attainable by adding new tests (which can be thought as classifiers, as ex-
plained above) to a previous set of tests (equivalently, to a previous classifier
ensemble). We point out that in our experiments the SpamAssassin tests can
be considered as classifiers, although most of them are fixed feature detectors,
because we consider the case in which the previous classifiers of the ensem-
ble are mot retrained, and neither their weight nor the decision threshold is
changed, after new classifier are added. For these experiments we used the
first 10,000 messages of the TREC 2007 corpus, in chronological order (1,969
legitimate e-mails and 8,031 spam e-mails), to train the SpamAssassin text
classifier. The remaining 65,419 e-mails were used as a test set.

In the model of section 3.1 the adversary was assumed to be capable to
modify his instances to attain any modification he would like on the classifier’s
outputs. In practice this could be not always possible. However it was very
difficult to check whether this is possible or not for all SpamAssassin’s tests.
For the sake of simplicity, we kept the above assumption and avoided to
devise real modifications to e-mails to attain the desired output changes. We
point out that this assumption is totally in favour of the adversary, since we
are not setting any constraint on the actual modifications which can be made
on spam e-mails by him.

In the experiments we considered the following utility function of the classi-
fier: Uc(+,4+) = 1,Uc(—,+) = =10, Uc(+,—) = =1,Uc(—, —) = 1, namely,
it gains 1 for correct classifications, looses 1 for misclassifying a spam e-mail
as legitimate, and looses 10 for misclassifying a legitimate e-mail as spam.

Evade Hard Multiple Classifier Systems 17

This is coherent with the considered application, in which it is generally
agreed that false positive errors are much more harmful than false nega-
tive ones. The utility function of the adversary was set to 0, except for the
gain accrued for evading the classifier, namely for spam e-mails misclassi-
fied as legitimate, for which two different values (1 and 5) were considered:
Ua(+,4) =Uxs(+,-) =Ua(—,—) =0,Ua(—,+) =1, 5. We considered two
different values of Ua(—, +) to evaluate scenarios characterised by a different
value of the maximum cost the adversary can (or wants) to pay to evade a
spam filter. We point out that the above choices of the relative values of the
utility functions is somewhat arbitrary, besides the obvious constraints men-
tioned above, due to the fact that such costs can not be precisely evaluated
in practice (and it could also be questionable that the real behaviour of a
classification system and of an adversary can be modelled in terms of such
utility functions, as pointed out in section 2.2). However, we are interested
here to the qualitative behaviour of the classifier’'s and adversary’s perfor-
mance (in terms of its expected utility), and different choices of the utility
values would affect only the absolute values of their expected utilities, not
their qualitative behaviour.

Finally, we assumed that the cost V; faced by the classifier for measuring
the features associated to the i-th text (or classifier) is zero, since such cost
is just a negative constant added to the expected value of the utility function
in the framework of section 3.1). The cost for the adversary was defined as
explained in section 3.1, as the manhattan distance in classifiers’ outputs
space between the outputs given to a positive instance after and before the
modification made by the adversary.

The addition of new classifiers at each move of the game was modelled
as follows. Since the number of SpamAssassin tests is rather high (several
hundreds), we did not add just one test at each move. Instead we subdivided
them into n disjoint subsets Si,...,S,, and added at each step all the tests
of a given subset. For the purposes of these experiments we chose n = 6.
The number of test was set to 119 for S; and to 100 for all the other sub-
sets, for a total of 619 tests. This choice was made since only 619 out of all
tests gave an output value of 1 for at least one of the e-mails in our data
set: we considered therefore only these 619 tests. In the real SpamAssassin
filter new tests are usually added in response to new spammers’ tricks. Ac-
cordingly, it would have been reasonable to subdivide the tests taking into
account their chronological order. Unfortunately the time in which each test
was introduced is not reported in the SpamAssassin documentation. So we
had to resort to a random subdivision. To make experiments easily repro-
ducible, we sorted all tests alphabetically according to their names as listed
in http://spamassassin.apache.org/tests_3_2_x.html. The only excep-
tion were the nine tests related to the text classifier, which were included in
the first subset since it is known that text classifiers are used in spam filters
since several years.

18 B. Biggio, G. Fumera, F. Roli

The moves of the classifier and the adversary at each step of the game
were implemented according to the following procedure. At each step, we
first evaluate the performance of the classifier and the adversary after a new
set of tests is added to the classifier, and the adversary uses the strategy which
was optimal against the previous set of tests (in the first step, this means that
the adversary does not modify his instances). This simulates what happens
in real cases, as soon as a spam filer is updated. Then the optimal strategy of
the adversary against the new set of tests is computed, and the performances
of the classifier and the adversary are evaluated again. This simulates what
happens when spammers devise new tricks to evade the last version of a spam
filter. This procedure can be formalised as follows:

1. R—0, A%=z) ==z for all x
2. Fork=1,....,n:

2.1 R+ R Sk

2.2 Evaluate the expected utility of the classifier and of the adversary,
when the classifier uses the tests in R and the adversary uses the
strategy A*~1(z) which was optimal for the previous set of tests

2.3 Compute the optimal adversarial strategy A”(z) against tests in R

2.4 Evaluate the expected utility of the classifier and of the adversary,
when the classifier uses the tests in R and the adversary uses the
corresponding optimal strategy .A*(x)

The adversary’s optimal strategy A* () at step k was computed as follows,
according to section 3.1. Denoting the set of tests S;J...|J Sk used by the
classifier as R, for any positive instance x correctly classified by the filter
(namely yc(z) = +, or equivalently), psi(x) > t), we compute the set
of feasible values s; for the scores of tests in R which would correspond to
an instance z’ classified as negative (namely), . s; < t), such that the
corresponding cost W (xz,2') = > ,cp|s; — si(x)| is minimum and is lower
than the utility gain. If such scores exist, then we assume that the adversary
evades the filters by modifying x, otherwise it is assumed that the adversary
can not afford to modify = to evade the filter.

The results are shown in figures 3 and 4, for both utility functions consid-
ered for the adversary, in terms of the expected utility of the adversary and of
the classifier, as a function of the number of tests used in SpamAssassin. The
results in the top-left graph refer to the case in which the adversary does not
modify his instances. As one could expect, the expected utility of the classifier
increases as the number of test increases while the opposite happens for the
adversary. This means that adding new classifiers (tests) based on different
features (without modifying the previous ones nor the detection threshold)
allowed to improve the detection capability. The only exception is when going
from 419 to 519 tests. The bottom-left graph shows what happens when the
adversary uses the optimal strategy against each set of tests. The expected
utility of the adversary significantly improves with respect to the previous
case. The expected utility of the classifier still increases as the number of

Evade Hard Multiple Classifier Systems 19

tests increases, but obviously attains lower values than in the previous case.
However, it is worth noting that the improvement attained by the adversary,
reported in the top-right graph, tends to decrease as the number of tests in-
creases. Similarly, the decrease in the classifier’s expected utility tends to be
higher for lower number of tests. The reason is that the modification cost the
adversary has to face to evade the classifier increases as the number of tests
increases, until it exceeds the utility gain for some positive instances, making
it no more convenient to modify them. This is a clear evidence that adding
new classifiers based on different features can allow to improve not only the
classifier’s discriminant capability, but also its hardness of evasion. Consider
finally the bottom-right graph, corresponding to the case when the classi-
fier adds new tests, and the adversary uses the strategy which was optimal
against the previous set of tests. For lower number of tests (up to 319), the
expected utility of the adversary is between the ones of the first two graphs:
this is reasonable, because it is now trying to evade only some of the tests
used by the classifier. However, for higher number of tests its expected utility
is even worse than the one it attained without trying to evade any test. The
expected utility of the classifier is instead very close to the one it attained
when the adversary did not try to evade any test. This means that the addi-
tion of new tests allowed to compensate the actions made by the adversary
to evade the previous tests. In other words, most spam e-mails which evaded
the previous version of the filter were detected by the new tests.

The behaviour of the expected utility for the two different values of the
gain accrued by the adversary for evading the classifier (figure 3 vs. figure 4) is
similar, with the obvious difference that the expected utility of the adversary
is higher in the graphs of figure 4 than in figure 3, since it can afford a higher
cost to modify instances. The opposite happens for the classifier.

These experimental results on a real case study give thus a quantitative
confirmation to the theoretical explanation given in section 3.1 on the ef-
fectiveness of adding new classifiers based on different features in improving
both the detection capability and the hardness of evasion of a security system
like a spam filter.

4.2 Splitting the features of a spam filter across an
ensemble of classifiers

In this section we give an experimental evaluation of the classification ac-
curacy and the hardness of evasion of the two classifier design architectures
modelled in section 3.2: a single linear classifier trained on a given set of fea-
tures, and an ensemble of linear classifiers trained on disjoint subsets of the
same features and combined with the OR logical function. The experiments
were carried out on the TREC 2007 e-mail corpus described in section 4.1.
We used as feature set the tests of the SpamAssassin filter (version 3.2.5)

20 B. Biggio, G. Fumera, F. Roli

1= : : 1= : :
Il Adversary Il AU (Adversary)
Ml Classifier [-AU (Classifier)
205 505
5 <
;.__.__.__.__-__L
0 0
119 219 319 419 519 619 119 219 319 419 519 619
Tests Tests
1= : : 1= : :
Il Adversary Il Adversary
Ml Classifier [Classifier
£05 20.5(
5 5
0 0
119 219 319 419 519 619 119 219 319 419 519 619
Tests Tests

Fig. 3 Expected utility for the adversary and the classifier, as a function of the size
of the classifier ensemble, when Uy (—,+) = 1. Top-left: the adversary does not modify
his instances. Bottom-left: the adversary uses the optimal strategy against the classifier.
Top-right: the gain and the loss in expected utility attained respectively by the adversary
and the classifier, when passing from the situation in the top-left graph to that in the
bottom-left one, as a function of the ensemble size. Bottom-right: for each ensemble size,
the adversary uses the optimal strategy against the previous set of rules.

which gave an output value of 1 for at least one of the e-mails of this data
set. Their number was 549. To implement the monolithic linear classifier and
the individual classifiers of the ensemble we used a support vector machine
(SVM) with the linear kernel. Since nine of the SpamAssassin tests are as-
sociated with a text classifier, they were not used as features of the MCS.
The text classifier itself was instead used as one of the individual classifiers
of the ensemble. In this case, given that its output is a real number in the in-
terval [0, 1] (with small values denoting legitimate e-mails), we set a decision
threshold of 0.5.

The first 10,000 e-mails of the data set, in chronological order (1,969 legit-
imate e-mails and 8,031 spam e-mails), were used to train the SpamAssassin
text classifier, and the individual classifiers of the MCS. The next 10,000 e-
mails were used to train the monolithic classifier (we avoided using to this
aim the same first 10,000 e-mails used to train the text classifier, since its out-
puts were used as features of the monolithic classifier). The remaining 55,419
e-mails were used as test set. The SVMs were trained using the publicly
available 1ibsvm software [2]. To carry out multiple runs of the experiments,
all the classifiers were trained on 2,000 e-mails randomly extracted from the
corresponding training sets described above.

Evade Hard Multiple Classifier Systems 21

5 : : 51— : :
47-Adversary 4 Il AU (Adversary)
Il Classifier AU (Classifier)
>,3’ 3
= =)
= 1 <2
1r] 1
Hm Hm D NE Em m=
0)))))) 0))))))
119 219 319 419 519 619 119 219 319 419 519 619
Tests Tests
5 : : 51— : :
Il Adversary| Il Adversary|
4 I Classifier 4| Classifier
23 23
=2 P
1r 1 I I
0 0
119 219 319 419 519 619 119 219 319 419 519 619
Tests Tests

Fig. 4 Expected utility for the adversary and the classifier, as a function of classifier
ensemble size, when U4 (—, +) = 5. See caption of figure 3 for the other details.

The SVM parameters of the monolithic classifier were set through a 5-
fold cross validation on the training set, by minimising an objective function
given by 100 x FP + FN, being FP and FN the two kinds of error rates.
In other words, the cost of false positive errors was fixed to be one hundred
times higher than the cost of false negative errors. The decision threshold
of the SVM was fixed by minimising the same objective function. The same
procedure was used to set the parameters and the decision threshold of the
individual classifiers of the MCS. However in this case we fixed the cost
of false positive errors to be one thousand times higher than the cost of
false negative errors. The reason is that, differently from the features of the
monolithic classifier, the individual classifiers of the MCS have been combined
with the OR function, implying that the MCS labels an e-mail as spam, if
at least one of the individual classifiers labels it as spam; it is therefore
necessary to keep the false positive error rate of the individual classifiers of the
MCS as low as possible. The parameters of the SVMs were the regularisation
parameter C' and the relative cost of false positive errors with respect to false
negative ones, used in the 1libsvm objective function of the SVM learning
algorithm (denoted in the following as wrp).! For the monolithic classifier,
the parameter values were chosen among all the possible combinations of the
C values {0.001,0.01,0.1, 1,10, 100}, and wpp values {2,5,7,10,50,100}. For

1 We point out that the cost parameter wgrp of the SVM learning algorithm could not
reflect the real cost considered in the task at hand: therefore its optimal value could be
different from the real cost.

22 B. Biggio, G. Fumera, F. Roli

the individual classifiers of the MCS we considered the same C' values above
and the wpp values {10, 50, 100, 500, 1000}.

As mentioned above, the MCS based on SpamAssassin tests was made
up of the SpamAssassin text classifier and of N — 1 linear classifiers trained
on disjoint subsets of the 541 tests not associated to the text classifier. We
considered two different ensemble sizes: N = 3 (namely, the text classifier
and two linear classifiers) and N = 11. The 541 available tests (features)
were distributed uniformly among the linear classifiers. The choice of which
features associate to each classifier should be made in principle taking into
account the kinds of the features. For instance, heterogeneous features could
be fed to different classifiers. For the sake of simplicity, in our experiments we
randomly split the features into N disjoint subsets (we just checked whether
the false positive error rate of the MCS, estimated on the 2,000 e-mails of
the training set, was higher than 0.01: in that case we disregarded the corre-
sponding feature splitting).

The experiments described above were repeated five times on different ran-
domly extracted training sets of the SVMs. Let us consider first the accuracy
of the two kinds of classifiers (the monolithic classifier and the MCS). We
report it in the Receiver Operating Characteristic (ROC) plane, in which the
Y axis corresponds to the true positive classification rate (T'P) and the X
axis to the false positive rate (FP). In figure 5 (left) we show the TP and
F' P values of the monolithic classifier and of the two MCSs on the e-mails
in the test set, obtained in the five runs of the experiments, as well as their
average values across the five runs. For the sake of completeness we also re-
port the whole ROC curve of the monolithic classifier (obtained by varying
the decision threshold of the SVM). It can be seen that the accuracy of the
monolithic classifier is slightly higher than the one of the two MCSs (it ex-
hibits both higher TP and lower F P values). We remind the reader that this
accuracy refers to the case when the adversary does not attack the classi-
fiers. The hardness of evasion is instead shown in figure 5 (right). Since we
are assuming that the adversary can only modify positive instances, only the
F'N rate can change under attack. Accordingly, in figure 5 (right) we report
the FN rate as a function of the maximum number of features the adver-
sary can evade. The F'N rates for zero evaded tests correspond to the values
reported in figure 5 (left). Figure 5 (right) clearly shows that, although the
MCSs have a worse F'N rate than the monolithic classifier when they are not
under attack, they are harder to evade. For instance, if the adversary evades
at most one feature, the F'IV rate of the two MCSs is between about 0.35 and
0.45, while the F'N rate of the monolithic classifier is about 0.70, and so on.
In other words, evading an MCS in which features are split across different
classifiers required to evade a higher number of features than in the case they
were processed by a monolithic classifier, as argued in section 3.2, although
this comes at the expense of a slight increase in the false positive rate.

Consider finally a comprehensive plot showing the trade-off between the
accuracy (when the adversary does not attack) and the hardness of evasion,

Evade Hard Multiple Classifier Systems 23

1r S i x 10
0.99F 13t
0.98F 12F = MCS-OR-03
o MCS-OR-11
0.97f 1r * SVM
e}
0.96¢ Z 1of
o
" 05l 2o
"
0.94F a 8
093 ! 7
1 L]
092t : 61
Y = MCS-OR-03 5l
091 oy © MCS-OR-11 .
il —SVM at
0 0.005 001 0015 002 0025 0.03 15 2 25 3
FP hardness of evasion

Fig. 5 Left: classification accuracy of the monolithic classifier (solid circles) and of the
two MCSs (squares: three classifiers; white circles: eleven classifiers) in the TP, FP (ROC)
plane. Small circles and small squares represent the values attained in the five runs of
the experiments, while large ones represent the corresponding average values. The average
ROC curve of the monolithic classifier is also shown (solid line), together with its standard
deviation (dashed lines). Right: average F'N rates with standard deviation as a function of
the maximum number of features the adversary can evade. The F'N rates when no feature
is evaded correspond to the ones in the left plot.

as the in the scheme of figure 2. The accuracy (Y axis) is measured using the
same trade-off between F'P and F'N rates as in the objective function of the
monolithic classifier: 100 x F' P+ FN. The hardness of evasion is measured as
explained in section 3.2, as the average minimum number of features that have
to be evaded to evade the whole classifier. The accuracy-hardness of evasion
trade-off attained by the monolithic classifier and by the MCSs is shown in
figure 6. From this plot it is easy to see that the monolithic classifier attains
a slightly higher accuracy (two to three times better than the MCSs), at the
expense of a lower hardness of evasion (up to two times lower than that of
the MCSs).

To sum up, the results presented in this section can be considered as a
first experimental evidence, based on a formal setting, that the MCS archi-
tecture based on splitting features across different classifiers can be exploited
in security tasks to improve the hardness of evasion in security systems.

5 Conclusions

Taking into account explicitly the presence of an intelligent, adaptive adver-
sary in the design of classification systems for security applications, with the
aim of making a classifier harder to evade, is a topic which has been addressed
only recently in the machine learning and pattern recognition literature. So

24 B. Biggio, G. Fumera, F. Roli

0.2 : MCS-OR-03j|
/ — MCS-OR-11
0 ---SWM
0 3 6 9 12 15

number of evaded tests

Fig. 6 Trade-off between the average classification accuracy (Y axis) and the average
hardness of evasion (X axis) of the monolithic classifier (dashed line) and of the two MCSs
(solid lines), over five runs of the experiments. Classification accuracy is measured as the
false negative error rate. The hardness of evasion is measured in terms of the average
minimum number of features the adversary has to evade, for evading the whole classifier.
Horizontal bars represent the standard deviation of classification accuracy over the five
runs of the experiments. Note that the area of the plot corresponding to the best accuracy-
hardness of evasion trade-off is the bottom-right one.

far no general frameworks exist yet to deal with this problem. In this chapter
we addressed this issue focusing on tasks like spam filtering and intrusion
detection in computer networks, and on a classifier architecture based on the
combination of an ensemble of classifiers. This architecture has been recently
proposed by several authors and is used in commercial and open source prod-
ucts, but is supported so far only on by empirical and intuitive motivations.
We tried to give a first answer, based on more formal motivations, to the
questions of whether and how multiple classifier systems could allow to im-
prove the hardness of evasion of a classifier. We considered in particular a
defence strategy consisting in adding classifiers based on new features to a
previous ensemble (as usually done in spam filters and intrusion detection
systems to deal with new kinds of attacks), and to a design approach based
on combining classifiers trained on disjoint subsets of features, instead of de-
signing a monolithic classifier trained on the same features. We developed
formal models of the corresponding classification systems and of possible ad-
versary’s strategies used to attack them (exploiting the framework developed
in [3] to analyse the former strategy). We then gave an experimental evalu-
ation on a case study related to the spam filtering task, using a real spam
filter and a large and publicly available corpus of real spam e-mails.

Our results can be exploited as a starting point of future works aimed at
formulating practical guidelines for the design of more robust classification
systems in security applications.

Evade Hard Multiple Classifier Systems 25

Acknowledgements

We would like to thank Nilesh Dalvi and Mausam for providing us the code
used in [3].

References

10.

11.

Barreno, M., Nelson, B., Sears, R., Joseph, A.D., Tygar, J.D.: Can machine learning be
secure? In: ASIACCS ’06: Proceedings of the 2006 ACM Symposium on Information,
computer and communications security, pp. 16-25. ACM, New York, NY, USA (2006).
DOI http://doi.acm.org/10.1145/1128817.1128824

. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001). Soft-

ware available at http://wuw.csie.ntu.edu.tw/~cjlin/libsvm

Dalvi, N., Domingos, P., Mausam, Sanghai, S., Verma, D.: Adversarial classification.
In: Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), pp. 99-108. Seattle (2004)

Giacinto, G., Roli, F., Didaci, L.: Fusion of multiple classifiers for intrusion detection
in computer networks. Pattern Recognition Letters 24, 1795-1803 (2003)

. Globerson, A., Roweis, S.T.: Nightmare at test time: robust learning by feature dele-

tion. In: W.W. Cohen, A. Moore (eds.) ICML, ACM International Conference Pro-
ceeding Series, vol. 148, pp. 353-360. ACM (2006)

Haindl, M., Kittler, J., Roli, F. (eds.): Multiple Classifier Systems, 7th International
Workshop, MCS 2007, Prague, Czech Republic, May 23-25, 2007, Proceedings, Lecture
Notes in Computer Science, vol. 4472. Springer (2007)

Jorgensen, Z., Zhou, Y., Inge, M.: A multiple instance learning strategy for combating
good word attacks on spam filters. Journal of Machine Learning Research 9, 1115-1146
(2008)

Kittler, J., Hatef, M., Duin, R.P., Matas, J.: On combining classifiers. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 20(3), 226-239 (1998)

Lowd, D., Meek, C.: Adversarial learning. In: A. Press (ed.) Proceedings of the
Eleventh ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD). Chicago, IL. (2005)

Perdisci, R., Gu, G., Lee, W.: Using an ensemble of one-class svm classifiers to harden
payload-based anomaly detection systems. In: International Conference on Data Min-
ing (ICDM), pp. 488-498. IEEE Computer Society (2006)

Ross, A.A., Nandakumar, K., Jain, A.K.: Handbook of Multibiometrics. Springer
Publishers (2006)

