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Abstract—Developing learning algorithms for multilabel clas-
sification problems, when the goal is to maximizing the micro-
averaged F measure, is a difficult problem for which no solution
was known so far. In this paper we provide an exact solution
for the case when the popular binary relevance approach is
used for designing a multilabel classifier. We prove that the
empirical maximum of the micro-averaged F measure can be
attained by iteratively retraining class-related binary classifiers
whose learning algorithm is capable of maximizing a modified
version of the F measure of a two-class problem. We apply our
optimization strategy to an existing formulation of support vector
machine classifiers tailored to performance measures like F , and
evaluate it on benchmark multilabel data sets.

I. INTRODUCTION

In binary classification tasks characterized by a high class
imbalance, or related to information retrieval, performance
measures based on some trade-off between precision and recall
are more suitable than accuracy. A common choice is the
F measure, which is defined as a weighted harmonic mean
of precision and recall [1]. Developing learning algorithms
that maximize the F measure is however difficult, as it
does not decompose over samples, contrary to measures like
classification accuracy. Only a few such learning algorithms
have been proposed so far: variants of the support vector
machine (SVM) [2] and logistic regression classifier [3], whose
objective function is however non-convex, and an extension of
the standard SVM formulation, that maximizes a convex lower
bound of a broad class of performance measures, including
F [4]. A different approach, first proposed in [5], consists
of assigning to a given set of testing samples the labels
that maximize the expected value of the F measure, with
respect to the distribution P (x, y), where x denotes a feature
vector and y ∈ {−1,+1} its class label. In this inference
approach, training samples are used for estimating the dis-
tribution P (x, y). Exact inference algorithms, with different
computational complexities, have been developed by several
authors (see [6], [7] and references therein).

The above F measure is defined for binary problems, and
can be named class-wise. For multilabel problems, where each
sample can belong to more than one class, three different
extensions have been defined: sample-wise, which decomposes
over samples and is computed like the class-wise F , but over
the labels of a single sample; macro-averaged (denoted in the
following as FM), which is the mean of the class-wise F
of each class; and micro-averaged (Fm), which is computed
after pooling per-sample labels across categories. The sample-
wise F decomposes over samples, and the macro-averaged
F decomposes over labels. Learning algorithms that aim at
maximizing them have been proposed respectively in [8], [9],
and in [10]. Inference algorithms that maximize the expected

value of the sample-wise F have also been derived in [11]
and [12]. The micro-averaged F does not decomposes over
samples nor over labels, instead, and is thus the most difficult
measure to optimize. Neither learning nor inference algorithms
have been developed yet for this measure.

In this paper we develop the first learning algorithm known
so far, that is capable to maximize the Fm measure. Our al-
gorithm applies to the case when the popular binary relevance
approach is used for designing a multilabel classifier, i.e., a
distinct binary classifier is used for each class, and the learning
algorithm of binary classifiers is in turn capable of maximizing
an ad hoc variant of the class-wise F measure. Building on a
property of Fm derived in our previous work [13], summarized
in Sect. II, in Sect. III we show that the global maximum
of Fm can be attained by iteratively retraining each binary
classifier. In Sect. IV we show that one instance of the required
kind of binary learning algorithm can be derived from the
SVM formulation of [4]. In Sect. V we empirically evaluate
on benchmark data sets the multilabel classifier obtained by
applying our learning algorithm to this SVM formulation.
Interesting directions for future work are discussed in Sect. VI.

II. BACKGROUND AND PREVIOUS WORK

We denote the d-dimensional feature space of a two-class
problem as X ⊆ Rd, the class labels as Y = {−1,+1}, a
feature vector as x ∈ X , and the corresponding label as y ∈ Y .
Precision (p) and recall (r) of a binary classifier f : X 7→ Y
can be empirically estimated on a data set of n samples from
the counts of true positives (TP ), false positives (FP ) and true
negatives (TN ), as p = TP/(TP +FP ) and r = TP/(TP +
FN). The class-wise F is defined as a weighted harmonic
mean of p and r:

Fβ =
1 + β2

1
p + β2

r

=
(1 + β2)TP

(1 + β2)TP + FP + β2FN
, (1)

where β ∈ [0,+∞). In a multilabel problem each sample can
belong to one or more of the N classes. The micro-averaged
F measure is defined as:

Fm
β =

(1 + β2)
∑N
k=1 TPk∑N

k=1[(1 + β2)TPk + FPk + β2FNk]
. (2)

The simplest approach for designing a multilabel classifier
f : X 7→ Y N is binary relevance [14]: it consists of indepen-
dently training N binary classifiers fk : X 7→ Y , that predict
if an input sample belongs or not to the corresponding class.
The decision functions fk are often obtained by thresholding
a real-valued discriminant function gk: fk(x) = sign(gk(x)).
Since most learning algorithms maximize classification ac-
curacy, a common approach for improving the performance



of a multilabel classifier is tuning its decision thresholds θk
to maximize the desired measure, on a data set S (e.g., a
validation set, or by cross-validation on training samples), such
that fk(x) = sign(gk(x) − θk) [15], [16]. This optimization
problem can be solved efficiently for FM

β , since it decom-
poses over classes. This is not the case of Fm

β , instead: in
principle, only an exhaustive search can provide the optimal
threshold values, with an infeasible computational complexity
of O(nN ) (where n denotes the size of S) [13]. Until [13],
only two suboptimal solutions had been proposed: using the
same threshold values that maximize FM

β [15], and a heuristic
iterative optimization algorithm [16].

In [13] we developed an optimization strategy that finds
the optimal threshold values in O(n2N2) time, based on the
derivation of the following property of Fm

β as a function of
the decision thresholds θ = (θ1, . . . , θN ), on a given data set
S:

Property 1. Consider a data set S and any given set
of threshold values θ. If, for each k = 1, . . . , N ,
arg maxθ′k F

m
β (θ1, . . . , θk−1, θ

′
k, θk+1, . . . , θN ) = θk, then the

absolute maximum of Fm
β on S equals Fm

β (θ).

This implies that the optimal threshold values can be found
by an iterative optimization strategy that increases Fm

β with
respect to a single threshold at a time. More precisely, θ can
be initially set to any value; then, a loop over all classes k =
1, . . . , N is carried out, and each θk is updated to any value
θ∗k that provides an increase of Fm

β (if any), keeping the other
thresholds fixed at their current values; this is repeated until
no increase can be attained in a whole loop over all classes.
To speeding up convergence, one can choose at each step the
θ∗k value that maximizes Fm

β . The expression of Fm
β to be

maximized at each step as a function of a single threshold θk
is:

Fm
β (θk) =

(1 + β2)TPk +Nk
(1 + β2)TPk + FPk + β2FNk +Dk

, (3)

where the constants Nk and Dk denote the contribution to Fm
β

of the other current classifiers (see Eq. 2):

Nk = (1 + β2)
∑
j 6=k

TPj , (4)

Dk =
∑
j 6=k

[(1 + β2)TPj + FPj + β2FNj ]. (5)

III. LEARNING ALGORITHMS FOR Fm
β

Our analysis in [13] focused on the case when Fm
β is

computed as a function of the decision thresholds of previously
trained binary classifiers fk. However, a fresh look to the proof
of Property 1 (see [13]) reveals that it has a much broader
scope, since it involves only the values of Fm

β as functions of
the class labels assigned by the decision functions fk, regard-
less of how these are implemented. Property 1 is thus valid also
in the particular case when θk denotes the parameters of fk,
that are set by its learning algorithm L (e.g., the coefficients
θk = (wk, bk) of a linear classifier fk(x) = sign(wt

kx+ bk)).
Also in this case the above optimization strategy provides
the global maximum of Fm

β , provided that L is capable of
maximizing (3) as its objective function. This corresponds to

finding the θ∗k value that maximizes Fm
β , keeping the other

θj’s fixed, as described in Sect. II.

The above optimization procedure is formally described by
Algorithm 1, where Sk denotes the data set obtained from S by
setting to +1(−1) the label of samples that (do not) belong to
class k; and L(Sk;Nk, Dk) denotes the application of L to Sk,
to learn the classifier fk, by maximizing the objective function
(3) with given values of Nk and Dk. According to Sect. II,
any initial value can be assigned to each θk; a reasonable
choice is to set them by maximizing the corresponding class-
wise F measure (1), i.e., θk ← L(Sk, 0, 0), which amounts to
maximizing FM

β . Note that also Algorithm 1 is guaranteed to
converge in a finite number of steps, since each fk is updated
only if this provides an increase of Fm

β , which can happen
only for a finite number of times on a finite data set.

Our theoretical result provides an exact solution to the
problem of developing multilabel learning algorithms using the
binary relevance approach, capable to maximize Fm

β on train-
ing samples. It shows that, although Fm

β does not decompose
over classes, its global maximum can be attained by an iterative
optimization strategy that does exploit a decomposition over
classes, provided that a binary learning algorithm capable of
maximizing Eq. (3) is available. In other words, this reduces
the problem of maximizing the multilabel Fm

β measure to
the problem of maximizing a two-class performance measure
similar to the class-wise F . We now discuss some practical
issues.

Eq. (3) can be maximized as a function of a decision
threshold in O(n) time [13]. Maximizing it as a function of all
the parameters of a given classifier (the step L(Sk;Nk, Dk)
of Algorithm 1) could be infeasible instead, since it is a
discrete measure computed from error counts. Nevertheless,
our optimization strategy converges to the global maximum
of Fm

β , even if a higher Fm
β value (if any) is found at each

step with respect to θk, not necessarily the highest one (see
Sect. II). However, this is not guaranteed either, if L maximizes
an approximation of the target measure, which is inevitable for
computational reasons in the case of discrete measures. The
consequence is that, in practice, our optimization strategy does
not guarantee to provide the global maximum of Fm

β , similarly
to all learning algorithms tailored to classification accuracy.
The convergence of Algorithm 1 in a finite number of steps is
nevertheless guaranteed, for the same reasons explained above.

To exploit our result, binary learning algorithms capable
of maximizing (a suitable approximation of) the objective
function (3) are required. As mentioned in Sect. II, two only
learning algorithms that maximize a measure similar to (3),
i.e., (1), exist [3], [4]. Note that (1) in itself is not a suitable
approximation of (3) as it may seem, since our optimization
strategy requires that the objective function (3) is tuned at each
step to the current value of Fm

β through the parameters Nk and
Dk. Nevertheless, it turns out that the objective function used
in [3], [4] can be easily modified into (3). For lack of space,
in the following sections we will focus only on [4].

The computational complexity of our optimization strategy
depends on the kind of binary classifier and on the correspond-
ing learning algorithm L. We leave a theoretical analysis to
future work, and evaluate the processing cost empirically in
Sect. V. Here we point out that Algorithm 1 requires to run L



Algorithm 1 Maximization of Fm
β

Input: a N -class multilabel training set S; a learning algorithm L
for binary classifiers
Output: binary classifiers fk(x; θk), k = 1, . . . , N

for k = 1, . . . , N do
θk ← L(Sk; 0, 0)

end for
repeat
updated← False
for k = 1, . . . , N do

Compute Nk and Dk using Eqs. (4) and (5)
θ∗k ← L(Sk;Nk, Dk)
if Fm

β (θ1, . . . , θk−1, θ
∗
k, θk+1, . . . , θN ) > Fm

β (θ) then
θk ← θ∗k, updated← True

end if
end for

until updated = False
return fk(x; θk), k = 1, . . . , N

at least for 2N times (i.e., two complete loops over all classes),
while the standard binary relevance approach requires only N
runs. Therefore, an additional stopping condition should be
used in practice, e.g., setting a threshold on the maximum
number of repeat loops, or on the relative increase of Fm

β in
subsequent loops. Nevertheless, empirical evidences in Sect. V
suggest that two complete loops over all classes are sufficient
to approach the global maximum of same Fm

β . The processing
cost could be further reduced by using, since the second loop
over classes, incremental learning techniques.

The processing cost can depend also on the order in which
the classes are scanned in the for loop, as shown (for the
case when only the decision thresholds are updated) in [13].
Also the resulting multilabel classifier can depend on the class
ordering, in the case when L does not guarantee to find the
global maximum of the objective function (3), or an additional
stopping condition is used. Devising suitable heuristics for
choosing an effective class ordering is left to future work.

IV. APPLICATION TO SUPPORT VECTOR MACHINES

Here we show how the SVM formulation of [4], named
SVM∆

multi, can be exploited in our framework.

SVM∆
multi is an extension of the standard SVM learning

algorithm to a class of performance measures that not decom-
pose into expectations over samples, including the class-wise
F measure (1). While standard SVMs learn a decision rule that
predicts the label of a single sample, the learning problem
of SVM∆

multi was formulated as a multivariate prediction of
all the n samples in the training set. Denoting as x ∈ Xn

and y ∈ Y n the tuples (x1, . . . ,xn), and (y1, . . . , yn), a
multivariate decision rule h : Xn 7→ Y n was defined as:
h(x) = arg maxy′∈Y n{wtΨ(x, y′)}, where Ψ is intended as
a function that returns a matching score vector between x
and y′. In [4] it was defined as: Ψ(x, y′) =

∑n
i=1 y

′xi. The
learning problem was formulated accordingly as the convex
optimization problem (6), where x and y refer to training
samples, and ∆(y′, y) denotes the loss function, that in our
case can be defined as (1− F ) ∈ [0, 1]:

minw,ξ≥0
1
2‖w‖

2 + Cξ
s.t. ∀y′ ∈ Y n \ y :

wt[Ψ(x, y)−Ψ(x, y′)] ≥ ∆(y′, y)− ξ
(6)

Even if the optimization problem (6) has 2n − 1 constraints,
it can be solved efficiently when ∆ can be computed in
polynomial time from TP, FP and FN counts, which is the
case of the F measure (1). In this case enumerating all
2n − 1 tuples y′ ∈ Y n \ y is not necessary; it suffices
instead enumerating all distinct values that ∆(y′, y) can attain
on training samples, which are only O(n2) [4]. Note that
SVM∆

multi is a generalization of standard SVMs, since their
learning problems coincide when ∆(y′, y) equals the number
of training set errors FP + FN [4].

Modification of the SVM∆
multi objective function. Sim-

ilarly to the F measure (1), it is easy to see that also the
measure (3) can be computed in polynomial time from TP,
FP and FN counts of class k, for fixed values of Nk and Dk.
Indeed, it differs from (1) only in the two additive constants
Nk and Dk at the numerator and denominator, and thus it
takes on O(n2) distinct values as well as (1). Therefore, it
belongs to the category of performance measures to which the
SVM∆

multi formulation applies. The same learning algorithm of
SVM∆

multi can thus be used to maximize the objective function
(3) in Algorithm (1).

Note that, similarly to standard SVMs, the learning prob-
lem (6) minimizes a convex upper bound of the loss function,
and is thus not guaranteed to provide its global minimum on
the training set. Therefore, when Algorithm 1 is applied to the
modified SVM∆

multi formulation, it could converge to a non-
global maximum of Fm

β on training samples, as explained in
Sect. III.

V. EXPERIMENTS

In this section we evaluate our learning algorithm on
seven benchmark multilabel data sets. We use the binary
classifier SVM∆

multi, modifying its implementation1 such that
its objective function becomes Eq. 3. To this aim, we added
the values of Nk and Dk to the command line parameters, and
replaced the performance measure (1) with (3).2 Note that the
modified learning algorithm coincides with the original one,
when Nk = Dk = 0. We implemented Algorithm 1 without
additional stopping conditions.

Experimental set-up. We used the following data sets,
related to four different domains (see Table I): Reuters 21578,
the Heart Disease sub-tree of Ohsumed, the five subsets of
Reuters RCV1v2, and the SIAM Text Mining Competition
2007 data set (text categorization); Scene (image annotation);
Yeast (gene annotation); Emotions (music annotation).3 For
Reuters and Ohsumed we used tf–idf features, and carried out
stemming, stop-word removal, and a further feature selection
step using the information gain criterion. For the other data
sets we used the feature vectors available at the mentioned
URLs.

1http://www.cs.cornell.edu/People/tj/svm light/svm perf.html
2 The implementation of SVM∆

multi also requires that the performance
measure equals 1 when FNk = FPk = 0, and TPk 6= 0. This is
not true for (3), if Nk 6= Dk . To meet this requirement we divided (3)
by the maximum value it can attain on training samples, corresponding to
TPk = n+

k , FPk = FNk = 0, where n+
k denotes the number of positive

samples for class k.
3 Reuters: http://www.daviddlewis.com/resources/testcollections/

reuters21578/; Ohsumed: http://trec.nist.gov/data/t9 filtering.html; Emotions:
http://mulan.sourceforge.net/datasets.html; the other data sets are available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multilabel.html.

http://www.cs.cornell.edu/People/tj/svm_light/svm_perf.html
http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://trec.nist.gov/data/t9_filtering.html
http://mulan.sourceforge.net/datasets.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html


Dataset Samples Features Classes Class frequency
(training/testing) (min/max)

Reuters 7769 / 3019 18157 90 1E-4/0.37
Ohsumed 12775 / 3750 17341 99 2E-4/0.25
RCV1v2 3000 / 3000 47237 101 3E-4/0.46
TMC 2007 21519 / 7077 30438 22 0.01/0.60
Yeast 1500 / 917 104 14 0.06/0.75
Scene 1211 / 1196 295 6 0.14/0.23
Emotions 391 / 202 72 6 0.30/0.43

TABLE I. CHARACTERISTICS OF THE DATA SETS.

All data sets, except for Reuters RCV1v2, are subdivided
into a training set and a testing set. We used as training
samples a subset of 80% of the original training set, and
used the remaining 20% as a validation set for parameter
estimation; classification performance was evaluated on the
original testing set. Ten runs were carried out, on random 80/20
subdivisions of the original training set. Reuters RCV1v2
is subdivided into five pairs of training and testing sets;
we repeated our experiments on each subdivision, using a
random 80/20 splitting of each original training set as above,
and evaluated classification performance on the corresponding
testing sets. For all data sets we used a linear kernel. The only
hyper-parameter is C, which was chosen at each run among
the values {10−1, 100, 101, 102, 103}, separately for each class,
by maximizing the corresponding F measure (1) on validation
samples. Note that this parameter estimation procedure is
tailored to FM

β , and is thus suboptimal for our classifier. In
the experiments we considered only the Fm

1 measure (β = 1).

Classification performance. Since no other learning al-
gorithm capable of maximizing Fm

1 exists, we compared
the performance attained by our algorithm with the baseline
binary relevance approach, using binary classifiers trained
with a standard learning algorithm, i.e., by minimizing the
misclassification probability. To this aim, we used the standard
SVM implementation available in the SVM∆

multi software. For
the sake of completeness, we also evaluated the improvement
of Fm

1 attained by our algorithm with respect to the value
obtained after a single loop over all classes, which amounts to
maximizing FM

1 on training samples (i.e., to using the original
SVM∆

multi classifier). The corresponding testing set Fm
1 values

are reported in Table II.

On the four text categorization data sets, optimizing Fm
1

on training samples by our learning algorithm provided a
slightly better testing set Fm

1 value on Ohsumed, with respect
to the standard binary relevance approach, while the opposite
happened on TMC. The performances are instead comparable
on Reuters and RCV1v2. Our algorithm outperformed binary
relevance on the other three data sets. This provides evidence
that, if Fm

1 is the target performance measure, a learning
algorithm that directly optimizes (a suitable approximation
of) it, instead of the misclassification probability, can be
advantageous.

Looking at the testing set Fm
1 values attained by our

algorithm after the first loop over all classes, it can be seen
that they were improved during subsequent loops on five data
sets, while no appreciable improvement was attained only on
Scene and Emotions (where the average difference in Fm

1 was
lower than the standard deviation). This is reasonable, since
these data sets do not exhibit a significant class imbalance (see
Table I), and it is known that the difference between the micro-

1 2 3 4 5
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Fig. 1. Fm
1 values attained on training and testing samples by Algorithm 1

in a single run on Reuters, during the loops over the 90 classes.

and macro-averaged F measure emerges especially when there
are rare classes.

Processing cost. We evaluated the processing cost of
Algorithm 1 in terms of the number of loops over all classes,
i.e., on the number of runs of the underlying learning algorithm
for binary classifiers. We remind the reader that the standard
binary relevance approach (that does not maximize Fm

β ) carries
out only one loop. Table II (row “Loops”) shows that Algo-
rithm 1 converged after 4.0 to 7.7 loops on average, and that
this value tends to be higher for data sets with a higher number
of classes and of training samples. In some applications such
a processing cost can be worth the improvement attainable on
Fm
β , e.g., when there are rare classes (see above). Nevertheless,

by analyzing the convergence speed we found that, already
at the end of the first repeat loop, a very close Fm

1 value
was attained on training samples, as the one provided at
convergence. A representative example is reported in Fig. 1,
where the corresponding behavior of Fm

1 on testing samples is
also shown for completeness. This suggests that Algorithm 1
can be safely stopped after two only loops over all classes, with
a processing time just twice as the one of binary relevance.
For the sake of completeness, Table II shows also the overall
number of binary classifiers updated in the inner for loop (row
“Updates”). As one could expect, it tends to be higher for data
sets in which a higher improvement over the baseline Fm

1
value is attained. However, for the reason explained above,
such updates mostly occurred during the first repeat loop (see
also Fig. 1).

VI. CONCLUSIONS

We presented the first theoretical result derived so far about
the development of multilabel learning algorithms capable of
maximizing Fm

β . We showed that, when the binary relevance
approach is used, the problem of maximizing Fm

β on a given
data set reduces to the problem of maximizing a variant of
the class-wise F measure of a two-class problem, despite Fm

β
does not decompose over classes (nor over samples). We then
devised the corresponding optimization algorithm. This pro-
vides a framework for developing learning algorithms tailored
to Fm

β , since it can be applied to any binary learning algorithm
capable of maximizing the mentioned variant of the class-wise
F measure. Two such binary learning algorithms can be easily
obtained from existing SVM and LR formulations tailored to
the class-wise F . Our results could stimulate further efforts



Data set
Reuters Ohsumed RCV1v2 TMC 2007 Yeast Scene Emotions

Optimized measure
Error rate 0.857± 0.003 0.485± 0.007 0.643± 0.033 0.526± 0.005 0.610± 0.020 0.630± 0.023 0.649± 0.018

FM
1 0.800± 0.005 0.443± 0.006 0.612± 0.017 0.468± 0.003 0.612± 0.008 0.667± 0.008 0.669± 0.012
Fm

1 0.854± 0.007 0.496± 0.006 0.643± 0.042 0.514± 0.004 0.643± 0.007 0.654± 0.009 0.664± 0.012
Loops 5.1± 0.6 7.7± 1.9 4.0± 0.7 5.9± 0.9 5.0± 1.2 3.8± 0.8 4.5± 1.0
Updates 59.0± 4.3 123.4± 13.1 32.8± 4.0 32.5± 4.1 11.5± 3.4 6.5± 1.2 8.6± 2.1

TABLE II. TOP ROWS: TESTING SET Fm
1 VALUES ATTAINED BY MAXIMIZING Fm

1 WITH OUR LEARNING ALGORITHM (ALGORITHM 1), BY THE
BASELINE BINARY RELEVANCE APPROACH (ERROR RATE), AND BY MAXIMIZING FM

1 (FIRST LOOP OF ALGORITHM 1). BOTTOM ROWS: NUMBER OF LOOPS
OF ALGORITHM 1 OVER ALL CLASSES, AND NUMBER BINARY CLASSIFIERS UPDATED. AVERAGE AND STANDARD DEVIATION OVER THE DIFFERENT RUNS

OF THE EXPERIMENTS ARE REPORTED.

toward the development of other binary learning algorithms
of this kind. We then provided some empirical evidence of
the effectiveness of our learning algorithm, with respect to
the standard binary relevance approach, when binary classifiers
that minimize the misclassification probability are used. The
processing cost of our learning algorithm turned out to be just
twice as the one of binary relevance.

Some interesting follow-ups of this work are the following:
(i) investigating whether our results can be exploited also
for implementing multilabel classifiers without using binary
relevance, to take into account the correlation between labels;
(ii) devising heuristics for choosing a suitable class ordering
in Algorithm 1, for reducing processing cost; (iii) investigating
whether incremental learning techniques for binary classifiers
can be exploited for the same goal; (iv) theoretically analyzing
computational complexity.

ACKNOWLEDGMENT

This work has been partly supported by the project
“Security of pattern recognition systems in future Internet”
CRP-18293 funded by Regione Autonoma della Sardegna,
L.R. 7/2007, Bando 2009.

REFERENCES

[1] C. J. van Rijsbergen, Information Retrieval, 2nd ed. London: Butter-
worths, 1979.

[2] D. R. Musicant, V. Kumar, and A. Ozgur, “Optimizing F-Measure
with Support Vector Machines,” in Int. Florida Artificial Intelligence
Research Society Conference. AAAI Press, 2003, pp. 356–360.

[3] M. Jansche, “Maximum expected F-measure training of logistic re-
gression models,” in Int. Conf. on Human Language Technology and
Empirical Methods in Natural Language Processing, 2005, pp. 692–
699.

[4] T. Joachims, “A Support Vector Method for Multivariate Performance
Measures,” in Int. Conf. on Machine Learning, 2005, pp. 377–384.

[5] D. D. Lewis, “Evaluating and optimizing autonomous text classification
systems,” in Proceedings of the 18th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval,
1995, pp. 246–254.

[6] Y. Nan, K. M. A. Chai, W. S. Lee, and H. L. Chieu, “Optimizing
F-measures: A tale of two approaches,” in Proceedings of the 29th
International Conference on Machine Learning, 2012.

[7] K. Dembczynski, A. Jachnik, W. Kotlowski, W. Waegeman, and
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