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Abstract 

Due to its uniqueness and potential in forensic applications, 

the sensor pattern noise (SPN) has drawn much attention in 

the digital forensic community and academia in the past few 

years. While much work has been done on the application of 

the SPN, little investigation into its characteristics has been 

reported in the literature. It is our intention to fill this gap by 

providing insight into the dependency of the SPN quality on 

the location in images. We have observed that the SPN 

components at the image periphery are distorted to the extent 

that when used for source camera identification, they tend to 

cause higher false positive rates. Empirical evidence is 

presented in this work. We suspect that this location-

dependent SPN quality degradation has strong connection 

with the vignetting effect as they exhibit the same type of 

location-dependency. We recommend that when image blocks 

are to be used for forensic investigation, they should be taken 

from the image centre before SPN extraction is performed in 

order to reduce false positive rate.  

 

1 Introduction 

The combined effect of the fallen prices and increased 

functionalities of digital imaging devices has allowed them a 

significant role in many aspects of our everyday life. 

Powerful and easy-to-use multimedia processing software has 

also made multimedia manipulation less technical demanding 

and opened up many new horizons for creative arts. However, 

it goes without saying that the very same set of tools and 

technologies also provide means for malicious intention to be 

realised. As a result, multimedia forensics has emerged as a 

new and important discipline. Typical multimedia forensic 

applications include source device identification [1-4], source 

device linking [5], classification of images taken by unknown 

cameras [6-8], integrity verification [7, 9], etc.  

A typical digital image acquisition process within an ordinary 

digital camera can be illustrated in a simplified manner as 

depicted in Figure 1. The light from the scene enters the lens 

and passes through an anti-aliasing filter before reaching a 

colour filter array (CFA). According to its predefined colour 

pattern, the CFA selectively allows one of the red (R), green 

(G) and blue (B) components of the light per pixel through to 

the ensuing sensor for conversion into the electronic form. 

The missing two colours at each pixel are subsequently 

interpolated by a de-mosaicking process based on the colour 

configuration within a neighbourhood of the pixel in question. 

A sequence of image processing operations, such as colour 

correction, white balancing, Gamma correction, enhancing 

and JPEG compression, then take place before the photo is 

stored in the disk. The hardware or software of each stage in 

the image acquisition pipeline may leave unique 

“fingerprints” in the content of the image, which can be 

exploited to identify the imaging devices. As such, to better 

facilitate forensic investigations, scientists have proposed 

various ways for extracting those device fingerprints from 

multimedia content. Sensor pattern noise (SPN) [1, 2, 4, 10], 

camera response function [11, 12], CFA interpolation 

artefacts [13, 14], traces of sensor dust [15], JPEG 

compression [16] and lens aberrations [17, 18] are among the 

fingerprints that have drawn much attention from scientists.  

While many methods [10, 11, 13, 14] can only work when 

specific assumptions are satisfied, the sensor pattern noise has 

attracted much interest due to its independence of the similar 

assumptions. Another desirable aspect of the sensor pattern 

noise is that it cannot only identify cameras to the accuracy at 

the model level, but also to the individual camera level [1, 2, 

4]. The deterministic component of the sensor pattern noise is 

mainly caused by manufacturing imperfections and different 

sensitivity of pixels to light due to the inhomogeneity of 

silicon wafers [19]. Because of the uniqueness of 

manufacturing imperfections and the non-uniform sensitivity 

of each pixel to the light, even sensors made from the same 

silicon wafer would possess uncorrelated and unique pattern 

noise. The reader is referred to [19] for more details in 

relation to the sensor pattern noise.  

 

 



 
Figure 1. The image acquisition process of an ordinary digital camera. 

 

2 Previous Work 

Because, like other types of noise, the sensor pattern noise is 

present in the high-frequency band in images, most image 

forensic techniques based on sensor pattern noise [2, 4, 5, 8] 

adopt the SPN extraction model proposed in [1] or its variant 

[9]. Let n be the SPN in an image I. The model proposed in 

[1] can be formulated as 

 

n = DWT(I) – F(DWT(I))                          (1) 

 

where DWT is the Discrete Wavelet Transform and F is a 

denoising function, which returns the low-frequency 

components of I. Subtracting the low-passed (denoised) 

version of I from the original version leaves the high-

frequency components of I to be used as the sensor pattern 

noise. It is easy to see from Eq. (1) that the feasibility of F 

plays an important role in determining the reliability of the 

sensor pattern noise. Although different denoising filters can 

be used as F, the wavelet-based denoising filter presented in 

the Appendix A of [1] has been known as effective in 

producing good results. As such, it is used in this work.  

SPN matching is necessary in forensic investigations. The 

normalised cross-correlation defined in Eq. (2) is commonly 

used to measure the similarity between SPNs ni and nj of 

images i and j:  
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where in and jn are the means of ni and nj, respectively. In 

source device identification, nj is usually the average of the 

SPNs from a number of images taken by the same device. If 

the similarity ρ(i, j) is greater than a threshold, image i is 

deemed as taken by device j. A commonly adopted threshold 

is 0.01 [1, 2, 5, 7]. 

   Scene details, such as brick walls, tree leaves and other 

types of textured surfaces, appear as high-frequency 

components in images with magnitudes many orders greater 

than that of sensor pattern noise. Their co-existence with the 

SPN in the high-frequency band of the images distorts the 

fidelity of SPN. Aiming at improving the SPNs’ performance 

in digital forensic applications, we have developed an 

effective SPN enhancer for attenuating the interference of 

scene details [2]. As the focus of this work is not to 

demonstrate the performance of the SPN enhancer, but to 

investigate a common anomaly in the false positive rates 

when both methods in [1] and [2] are used for source device 

identification, the reader is referred to [2] for details about the 

SPN enhancer.  

 

3 Anomaly Reported in Previous Work 

Table 3 of [2], which depicts the false positive rates in source 

device identification, is one of the sets of statistics for 

validating the proposed SPN enhancer. We have included it as 

Table 1 in this work to make it self-contained. We use M1 to 

stand for the SPN extraction model proposed in [1] (i.e., Eq. 

(1) of this work) and M2 to stand for our proposed SPN 

enhancer [2]. As reported in [2], we observed an anomaly in 

Table 1 that, for both methods, when scanning from the right 

hand side of the table, the false positive rates decrease slightly 

and reach the minimum when the image block size is 1024 × 

1024 pixels. The false positive rates then increase 

significantly afterwards. This is particularly clearer for the 

case without enhancement (i.e., M1). After applying other 

values of the similarity threshold (0.005, 0.015, 0.02, 0.025 

and 0.03), we observed the same anomaly. We could not 

explain the cause of this anomaly at the time of writing [2]. 

But our recent study into the vignetting effect in optics and 

photography [19-21] has pointed us to look into the 

possibility that the vignetting effect may have a role in 

distorting the sensor pattern noise in a location-dependent 

manner. Our experiments, to be presented in Section 4, reveal 

the fact that blocks taken from locations near the image centre 

for source identification produce lower false positive rates 

while blocks from the periphery give rise to significantly 

higher rates. This has confirmed that the quality of the sensor 

pattern noise exhibits the similar location-dependent 

characteristic as that of the vignetting effect. Although due to 

the lack of our expertise in optics, we are reluctant to 

definitively conclude that such a location-dependent SPN 

quality variation is due to the vignetting effect, we would like 

to  

1) present our finding of this location-dependency of SPN 

quality and  

2) recommend that the image borders be avoided if only 

portions / blocks of the full-size images are needed for 

forensic applications.  

We also hope that this work will encourage further 

discussions over the possible connection between the 

vignetting effect and the location-dependent SPN quality 

degradation in order to gain better understanding of SPN 

characteristics. Therefore before we present our empirical 

finding in Sections 4, the vignetting effect is briefly reviewed.  



  Vignetting is the location-dependent reduction of brightness 

in optics and photography at the periphery of photos. 

Brightness is higher in the centre of the images and falls off 

gradually towards the edges. This also explains the effect that 

a photographic portrait is usually clearer in the centre and 

fades off at the periphery. Camera settings and lens design are 

the main causes of the undesired vignetting effect. Four main 

types of vignetting due to different reasons are [22] 

 Optical vignetting: This type of vignetting is inherent in 

the lens design and is due to the physical aperture of a 

multiple element lens. Because the lens has a length, the 

on-axis light from the scene (corresponding to the image 

centre) impinges the lens spot-on while the off-axis light 

(corresponding to image periphery) may be blocked by 

the lens body. As a result, the effective entrance pupil 

for the off-axis incident light is reduced, making the 

image edges appear darker than the image centre.  

 Natural vignetting: Also known as natural illumination 

falloff, natural vignetting is not due to the blocking of 

light rays, but to the different angles at which the light 

strikes on different locations of the sensor array. The 

light has to travel longer from the rear end of the lens 

(the exit pupil) to the edges than to the centre of the 

sensor array. The longer the journey is, the greater the 

loss of light intensity. According to the so-called "cosine 

fourth" law of illumination falloff, the falloff is 

proportional to cos
4
 θ, where θ is the angle of the 

incident light on the sensor array. With a zoom lens, the 

natural vignetting effect is generally inversely 

proportional to the focal length. 

 Pixel vignetting: Light striking on a photon well in the 

sensor at a right angle produces a stronger signal than 

light hitting it at an oblique angle. This angle-

dependence of the sensor response also contributes to 

the falloff of brightness towards the edges of images.  

 Mechanical vignetting: This is due to the use of 

inappropriate attachments to the lens, such as thick or 

stacked filters, secondary lenses and misaligned lens 

hoods, that partially block the light path.  

Based on the above discussions, we can see that both 

vignetting effect and false positive device identification rates 

increase with respect to the distance of the sensor elements / 

image pixels from the centre. As such, we expect that the 

vignetting effect is likely to be the cause of the location-

dependent SPN quality variation. 

 

Method 

False positive rate (%) associated with blocks of various sizes 

128 

×128 

128     

× 256 

256     

× 256 

256     

× 512 

512     

× 512 

512 

×1024 

1024 

×1024 

1024 

×2048 

1536 

×2048 

M1 41.68 38.68 32.60 25.71 16.28 6.75 1.90 2.40 12.03 

M2 8.33 3.22 0.95 0.15 0.03 0 0 0.03 0.4 

Table 1. False positive rates with and without applying the SPN enhancer of [2] to the sensor pattern noises extracted with the model 
proposed in [1]. Note that, in this experiment, the image is deemed as taken by the cameras that are not the source camera if their similarity 

values are greater than a threshold 0.01. The photos contain a wide variety of natural indoor and outdoor scenes taken during 

holidays, around campus and cities, in offices and laboratories, etc. 
M1: Unenhanced sensor pattern noise [1]; M2:  Enhanced sensor pattern noise [2] 

 

 

4 Empirical Investigations 

As we can see from Table 1, the anomalous changes of false 

positive rates are more evident when M1 is applied and thus 

can better facilitate our discussions, we will only use M1 in 

the following source device identification experiments. To 

analyse the quality of SPN without the influence of scene 

details, we use 350 photos of blue sky in JPEG format taken 

by 7 cameras, each responsible for 50. The JPEG quality 

factors range approximately from 93% to 97%. The 7 cameras 

(C1 to C7) are Canon IXUS 850IS, Canon PowerShot A400, 

Canon IXY Digital 500, FujiFilm A602, FujiFilm FinePix 

A902 and Olympus FE210 and iPhone 4. Apart from iPhone 

4, which has a resolution of 1936 × 2592 pixels, the 

dimensions of the images of the other 6 cameras are 1536 × 

2048 pixels. For each camera, the average of 10 SPN blocks, 

each from one image, taken by the camera is used as its 

reference SPN block. A SPN block of each individual image 

is then used to compare its similarity with the reference SPN 

blocks of the cameras to collect the false positive rates. The 

normalised cross-correlation defined in Eq. (3) is used to 

measure the similarity between SPNs ni of images i and the 

reference SPN nc:  
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where in and cn are the means of ni and nc, respectively. For 

each image block, if its smilarity with any camera’s reference 

SPN block is greater then 0.01, this image is deemed as taken 

by the camera. Therefore, each image may be deemed as 

taken by more than one cameras.  

   Table 2 to Table 5 are the confusion matrices, which record 

the positive rates (%) when blocks of 512 × 512 pixels taken 

from various locations of the images are used to identify their 

source cameras. For example, the value of element (C2, C5) is 



the positive rate when the SPNs of the 50 image blocks due to 

Camera C2 are compared to the reference SPN block of 

Camera C5. Because C2 and C5 are different cameras, element 

(C2, C5) is actually the false positive rate. By the same token, 

(Ci, Ci), i = 1, 2, …, 7, along the diagonal direction are true 

positive rates. 

   The image blocks involved in the creation of Table 2 are 

taken from the upper-right corner. To reveal the quality 

changes of SPN components with respect to their locations in 

the original images, in the experiment associated with Table 

3, we take one block with a 16-pixel displacement in both 

dimensions from the upper-right corner of the original image. 

That means 16 pixels at the periphery of each image are 

discarded and then a block of 512 × 512 pixels is taken from 

the upper-right corner of the new image. The true positive 

rates along the diagonal direction of Tables 2 and 3 are all 

100%, which are not surprising because there are no scene 

details in the images to distort the SPN. However, the focus 

of our discussion is the false positive rates off the diagonal 

axis. We can see that they vary quite significantly among 

cameras because of the quality of the sensors. But it is clear to 

see that, on average, the false positive rates in Table 3 

(9.33%) are significantly lower than those in Table 2 

(25.48%). This is clear evidence that the quality of the SPN 

components closer to the image centre is better than their 

counterparts closer to the image edges. It is also interesting to 

see that the blocks associated with Table 3 are only 16 pixels 

closer to the image centre than the blocks associated with 

Table 2. As for Table 4, the blocks involved are taken from 

the location 48 pixels away from the upper-right corner. The 

average false positive rate is 10.95%, which is slightly higher 

than that of Table 2 (9.33%). This situation is slightly against 

our prediction. But conclusion is not to be drawn based on 

this single instance as the rate difference is small. A clear 

picture will emerge in Table 5 as well as Table 6 to 8 when 

blocks taken from a different corner are involved. Table 5 

shows the statistics obtained from the same experiment 

conducted on the blocks taken from the image centre. The 

lower average false positive rate (7.19%) re-conforms to the 

location-dependency of the SPN quality. The last 3 average 

false positive rates of the above 4 rates (25.48%, 10.95%, 

9.33% and 7.19%) suggest that, generally speaking, the SPN 

quality of these cameras are relatively stable along the 45˚ 

direction (towards upper-right corner) until the edge of the 

image is reached, where the false positive rate increases 

sharply to 25.48%. But this is not the same situation revealed 

in the next set of experiment.  

 

 

Cameras C1 C2 C3 C4 C5 C6 C7 

C1 100 8 98 22 96 6 2 

C2 6 100 28 10 20 8 0 

C3 100 10 100 32 100 0 0 

C4 40 22 56 100 64 2 6 

C5 98 20 100 56 100 0 4 

C6 10 14 4 0 0 100 2 

C7 8 2 8 2 6 0 100 

Table 2. Confusion matrix. A block of 512 × 512 pixels is 

taken from the upper-right corner of each full-size image. The 

rates (%) off the diagonal axis are false positives while the 

rates (%) along the main diagonal direction are actually the 

true positives. When all false positive rates associated with all 

cameras are pooled together the average false positive rate is 

25.48%.  

 

 

 

Cameras C1 C2 C3 C4 C5 C6 C7 

C1 100 2 2 0 28 10 2 

C2 2 100 16 8 28 14 0 

C3 6 18 100 2 42 2 0 

C4 4 6 10 100 16 6 0 

C5 26 38 58 20 100 0 0 

C6 2 14 0 0 6 100 0 

C7 0 0 0 0 2 2 100 

Table 3. Confusion matrix. In this experiment, the 16 pixels 

along the 4 edges of each image are discarded and then a 

block of 512 × 512 pixels is taken from the upper-right corner 

of the new image. The average false positive rate is 9.33%. 

 

 

 

Cameras C1 C2 C3 C4 C5 C6 C7 

C1 100 22 2 0 2 50 8 

C2 10 100 20 12 36 10 2 

C3 2 8 100 0 18 2 0 

C4 2 22 10 100 44 4 2 

C5 18 22 22 26 100 16 0 

C6 20 14 8 0 8 100 6 

C7 4 62 0 0 0 0 100 

Table 4. Confusion matrix. In this experiment, the 48 pixels 

along the 4 edges of each image are discarded and then a 

block of size 512 × 512 pixels are taken from the upper-right 

corner of the new image. The average false positive rate is 

10.95%. 

 

 

 

Cameras C1 C2 C3 C4 C5 C6 C7 

C1 100 6 4 0 8 4 0 

C2 6 100 22 10 34 0 0 

C3 10 22 100 2 22 0 4 

C4 0 6 8 100 22 0 0 

C5 6 42 10 4 100 0 16 

C6 12 0 2 0 4 100 4 

C7 0 0 0 0 12 0 100 

Table 5. Confusion matrix. In this experiment, one block of 

512 × 512 pixels is taken from the centre of the original full-

size image. The average false positive rate is 7.19%. 

 

 

   Table 2 to 4 are associated with blocks taken from (or close 

to) the upper-right corner of the original image while Tables 6 

to 8 contain statistics associated with blocks of the same size 

(512 × 512 pixels) taken from (or close to) to the upper-left 

corner. We observed that, although the quality degradation of 

the sensor pattern noise components is proportional to their 



distance from the image centre, the SPN quality does not 

necessarily vary isotropically. The locations of the blocks 

associated with Tables 6 to 8 are equally distant from the 

image centre as the blocks associated with Tables 2 to 4. 

However, we can see that the average false positive rates in 

Tables 6 to 8 (64.67%, 41.43%, 22.76%) are significantly 

higher than those in Tables 2 to 4 (25.48%, 10.95%, 9.33%).  

We also carried out the same experiments on blocks taken 

from the lower-left and lower-right corners. When pooling the 

positives rates across all cameras and four corners of images, 

the location-dependency of the SNP quality becomes even 

more evident. The overall average false positive rates are 

 33.70% when blocks are taken directly from the 

corners (Case 1) 

 19.26% when blocks 16 pixels inward from the corners 

are used (Case 2) 

 13.56% when blocks 48 pixels inward from the corners 

are used (Case 3) 

 7.19% when blocks are taken from the image centre 

(Case 4). Note this rate is lower than that (16.28%) in 

Table 1 because the images used are all of blue sky 

with no details while the images used for producing 

Table 1 are photos containing a wide variety of natural 

indoor and outdoor scenes taken during holidays, 

around campus and cities, in offices and laboratories. 

These natural images contain more details which 

contaminate the sensor pattern noise and lead to higher 

false positive rates. 

The above experiments have conformed to our expectation 

that the SPN quality is indeed location-dependent and it is 

degradated to a greater extent at the image periphery. Figure 2 

illustrates the average false positive rate for the above four 

cases.  As such, we can conclude that 

 This explains the anomaly reported in Table 3 of [2] 

(duplicated in Table 1 in this work). When full-size 

images (1536 × 2048 pixels) are used for device 

identification, although more data is invloved to help 

with the identification, all SPN components with the 

poorest quality are also included, which out-weigh the 

benefit of involving the whole image. By comparing the 

figures in Table 1, we can see that when only blocks of 

1024 × 2048 pixels taken from the image centre are 

used, the false positive rate drops from 12.03% (when 

the full-size images are use) to 2.4%. This is because the 

256 rows at the top edge and the 256 rows at the bottom 

edges have been excluded. So even though only 66.67 % 

(= 1024 / 1536) of the original pixels are used, the 

exclusion of the SPN components with poorer quality at 

the periphery allows better performance to be gained. 

This trend continues as the blocks size is further reduced 

down to 1024 × 1024. This time not only the 512 rows 

at the periphery, but also the 1024 columns at the image 

periphery are excluded. However, when the block size is 

further reduced down to 512 × 1024, the false positive 

rates start to increase, indicating that the SPN 

components of poor quality have been sufficiently 

excluded and the identifier is starting to suffer from the 

lack of useful data (i.e., SPN components of better 

quality).  

 In the forensics applications wherein smaller image 

blocks are required (e.g., blind classification of large 

image datasets [6-8]), it is advisable that blocks are 

taken from the image centre.  

 The higher false positive rates at the image periphery 

indicate that the SPN similarity / correlation at the image 

edges is greater. This also suggests that the SPN quality 

is distorted in the form of blurring. This is similar to the 

fact that the correlation of two smooth signals is greater 

than the correlation of two high-frequency signals. 

 

 

 

Cameras C1 C2 C3 C4 C5 C6 C7 

C1 100 66 100 50 100 20 50 

C2 66 100 90 60 98 50 76 

C3 100 100 100 84 100 22 92 

C4 50 70 70 100 86 8 76 

C5 100 100 100 100 100 18 100 

C6 52 56 40 2 54 100 10 

C7 38 62 80 36 74 10 100 

Table 6. Confusion matrix. A block of 512 × 512 pixels is 

taken from the upper-left corner of each full-size image. The 

average false positive rate is 64.67%. 

 

 

 

Cameras C1 C2 C3 C4 C5 C6 C7 

C1 100 44 86 20 98 0 18 

C2 34 100 60 42 92 10 54 

C3 74 72 100 28 88 2 32 

C4 38 52 30 100 80 2 32 

C5 100 100 100 92 100 0 84 

C6 8 12 6 16 26 100 8 

C7 10 28 18 8 44 0 100 

Table 7. Confusion matrix. In this experiment, the 16 pixels 

along the 4 edges of each image are discarded and then a 

block of 512 × 512 pixels is taken from the upper-left corner 

of the new image. The average false positive rate is 41.43%. 

 

 

 

Cameras C1 C2 C3 C4 C5 C6 C7 

C1 100 22 54 2 62 2 0 

C2 48 100 86 8 80 2 0 

C3 48 60 100 22 82 2 0 

C4 8 14 28 100 52 0 0 

C5 30 66 70 28 100 0 22 

C6 8 0 4 4 14 100 0 

C7 4 2 4 2 16 0 100 

Table 8. Confusion matrix. In this experiment, the 48 pixels 

along the 4 edges of each image are discarded and then a 

block of size 512 × 512 pixels are taken from the upper-left 

corner of the new image. The average false positive rate is 

22.76%. 



 
Figure 2. Average false positive rates for four cases. Case 1: 

blocks taken from the corners; Case 2: blocks 16 pixels 

inward from the corners; Case 3: blocks 48 pixels inward 

from the corners; Case 4: blocks taken from the image centre. 

 

5 Conclusion 

Sensor pattern noise is of great potential in digital forensic 

applications. Therefore better understanding of its 

characteristics and their impact on the accuracy of the 

information / evidence drawn from forensic analysis is 

important. We have observed a counter intuitive situation in 

our previous work that full-size images or image blocks 

closer to the image periphery tend to give rise to higher false 

positive rates when used for source camera identification. In 

this work, starting with the assumption that this anomaly 

might be related to the vignetting effect due to the lens design 

and camera settings, we have carried out a series of 

experiments to see if significant performance discrepancy can 

be found when the SPN from peripheral blocks and inner 

blocks are used. The experiments have confirmed that, like 

the vignetting effect, the SPN quality is indeed location-

dependent and explained the cause of the anomaly. Based on 

the experimental results, our recommendations for the digital 

forensics communities are: 

 Excluding the peripheral pixels of images before the SPN 

is extracted for source camera identification and linking,  

 Taking the blocks from the centre when only small blocks 

are needed in the applications (e.g., image classification), 

 Exercising cautions when dealing with blocks along the 

image periphery when block-based integrity verification is 

to be carried out. 

 

References 

[1]J. Lukáš, J. Fridrich and M. Goljan, “Digital Camera 

Identification from Sensor Pattern Noise,” IEEE Transactions on 
Information Forensics and Security, vol. 1, no. 2, pp. 205–214, 

(2006) 

[2] C.-T. Li, “Source Camera Identification Using Enhanced Sensor 
Pattern Noise,” IEEE Transactions on Information Forensics and 

Security, vol. 5, no. 2, pp. 280 – 287 (2010) 

[3] N. Khanna and E. J. Delp, “Source Scanner Identification for 

Scanned Documents,” in IEEE International Workshop on 
Information Forensics and Security, pp. 166 – 170, UK (2009) 

[4]R. Caldelli, I. Amerini, F. Picchioni, A. De Rosa and F. 

Uccheddu, “ Multimedia Forensic Techniques for Acquisition 
Device Identification and Digital Image Authentication,” in 

Handbook of Research on Computational Forensics, Digital 

Crime and Investigation: Methods and Solutions, C.-T. Li (Ed.), 

Hershey, PA: Information Science Reference (IGI Global) (2009) 
[5]J. Fridrich, “Digital Image Forensic Using Sensor Noise,” IEEE 

Signal Processing Magazine, vol. 26, no. 2, pp. 26-37 (2009) 

[6]C.-T. Li, “Unsupervised Classification of Digital Images Using 
Enhanced Sensor Pattern Noise,” in IEEE International 

Symposium on Circuits and Systems (ISCAS'10), France (2010) 

[7] R. Caldelli, I. Amerini, F. Picchioni and M. Innocenti, “Fast 
Image Clustering of Unknown Source Images” in IEEE 

International Workshop on Information Forensics and Security, 

USA (2010) 

[8] B.-B. Liu, H.-K. Lee, Y. H and C.-H. Choi, “On Classification of 
Source Cameras: A Graph Based Approach,” in IEEE 

International Workshop on Information Forensics and Security, 

pp. 1-5, Seattle, USA (2010) 
[9] C.-T. Li and Y. Li, “Colour-Decoupled Photo Response Non-

Uniformity for Digital Image Forensics,” IEEE Transactions on 

Circuits and Systems for Video Technology (accepted, 2011) 

[10] H. Gou, A. Swaminathan and M. Wu, “Intrinsic Sensor Noise 
Features for Forensic Analysis on Scanners and Scanned 

Images,” IEEE Transactions on Information Forensics and 

Security, vol. 4, no. 3, pp. 476 - 491 (2009) 
[11] Y.-F. Hsu and S.-F Chang, “Camera Response Functions for 

Image Forensics: An Automatic Algorithm for Splicing 

Detection,” IEEE Transactions on Information Forensics and 
Security, vol. 5, no. 4, pp. 816 - 825 (2010) 

[12] T.-T. Ng and M.-P. Tsui, “Camera response function signature 

for digital forensics - Part I: Theory and data selection,” in IEEE 

International Workshop on Information Forensics and Security, 
pp. 156 – 160, UK (2009) 

[13] A. C. Popescu and H. Farid, “Exposing Digital Forgeries in 

Color Filter Array Interpolated Images. IEEE Transactions on 
Signal Processing, vol. 53, no. 10, pp. 3948–3959 ( 2005) 

[14] H. Cao and A. C. Kot, “Accurate Detection of Demosaicing 

Regularity for Digital Image Forensics,” IEEE Transactions on 

Information Forensics and Security, vol. 4, no. 4, pp. 899–910 
(2009) 

[15] A. E. Dirik, H. T. Sencar and N. Memon, “Digital Single Lens 

Reflex Camera Identification from Traces of Sensor Dust,” IEEE 
Transactions on Information Forensics and Security, vol. 3, no. 

3, pp. 539 - 552 (2008)  

[16] F. Huang, J. Huang and Y. H. Shi, “Detecting Double JPEG 
Compression with the Same Quantization Matrix,” IEEE 

Transactions on Information Forensics and Security, vol. 5, no. 

4, pp. 848 - 856 (2010) 

[17] V. T. Lanh, S. Emmanuel and M. S. Kankanhalli, “Identifying 
Source Cell Phone Using Chromatic Aberration,” in IEEE 

Conference on Multimedia and Expo,  Beijin, China ( 2007) 

[18] K. S. Choi, E. Y. Lam and K. K. Y. Wong, “Automatic Source 

Camera Identification Using the Intrinsic Lens Radial 
Distortion,” Optics Express, vol. 14, no. 24, pp. 11551-11565 

(2006)   

[19] J. R. Janesick, Scientific Charge-Coupled Devices. SPIE vol. 

PM83, Bellingham, USA (2001) 
[20] H. Hecht, Optics. Addison-Wesley (2002) 

[21] D. B. Goldman and J.-H. Chen, “Vignette and Exposure 

Calibration and Compensation,” in IEEE International 

Conference on Computer Vision, vol. 1, pp. 899 – 906 (2005) 
[22] Ray, S. F.: Applied photographic optics, 3rd ed., Focal Press 

(2002) 


