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Abstract
The identification of subject-specific traits extracted frompatterns of brain activity still represents an
important challenge. The need to detect distinctive brain features, which is relevant for biometric and
brain computer interface systems, has been also emphasized inmonitoring the effect of clinical
treatments and in evaluating the progression of brain disorders. In this studywe propose an approach
which aims to investigate the existence of a distinctive functional core (sub-network)using an
unbiased reconstruction of network topology. Brain signals from a public and freely available EEG
dataset were analysed using a phase synchronization basedmeasure,minimum spanning tree and k-
core decomposition. The analysis was performed for each classical brain rhythm separately. Highest
classification rates from k-core decompositionwere obtained in the gamma (EER=0.130,
AUC=0.943) and high beta (EER=0.172, AUC=0.905) frequency bands. These results confirm
that EEG analysismay represent an effective tool to identify subject-specific characteristics thatmay be
of great impact for several bioengineering applications. However, despite thewidespread use of these
techniques, critical aspects should be consideredwhen dealingwith results fromhigh-frequency
scalp EEG.

1. Introduction

The identification of subject-specific traits extracted
from patterns of brain activity still represents an
important challenge. In contrast to the widely used
approach based on identification of functional brain
features that allow distinguishing between groups of
subjects (generally, patients and healthy controls), the
detection of human distinctive traits estimated from
brain activity may be of help in several relevant
applications.

Recently, the need to detect subject-specific func-
tional brain traits has been emphasized in both clinical
[1] and biometric applications [2–4]. In particular,
functional connectivity and tools from complex net-
work analysis, which represent a new paradigm in the
study of brain organization [5], have suggested that the
resting state may reveal network organizations linked
with individual cognitive and behavioural trajectories
[6, 7]. Moreover, it has been shown [8] that resting-
state functional connectivity is associated with

individual differences (phenotypic variability) in sev-
eral domains such as behavioural traits, neurological
conditions and response to treatments.

Therefore, subject-specific network features seem
to be candidate markers in monitoring the effects of
treatments and in evaluating the progression of brain
disorders in the era of personalizedmedicine. Further-
more, biometric applications strongly require the clear
definition of distinctive brain activity features. In the
last decade, several papers investigated the use of elec-
troencephalographic (EEG) features with the aim to
characterize subject-specific brain traits. Even though
it has been shown that simple power spectral [2]mea-
sures allow us to obtain high identification perfor-
mances, questions related to subject identification
remain to be answered. Recently, functional con-
nectivity [9] and brain network organizationmeasures
[10] have been successfully applied in order to investi-
gate human brain distinctiveness, also adding impor-
tant information on physiological implications of the
identified specific traits. Nevertheless, it is well
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established that comparing different networks is not
without difficulties. Since number of nodes and aver-
age degree may have a great influence on network
parameters, the comparison betweenmeasures extrac-
ted from empirical networks can yield spurious results
[11]. The identification of (arbitrary) thresholds or the
use of normalization procedures (based on surrogate
data) do not allow for a reliable unbiased comparison.
It has been shown that the minimum spanning tree
(MST), an acyclic sub-network that connects all nodes,
may represent an unbiased method for brain network
comparison [12, 13].

Moreover, recent studies have shown that central
nodes (hubs) tend to form a densely linked commu-
nity called rich-club [14–16], which plays an impor-
tant role in integrating and disseminating information
across the entire network. These results suggest that
rich-club connections form a central functional core
(backbone) responsible for efficient global brain
communication.

In this study we propose an approach which aims
to investigate the existence of a distinctive central
functional core using an unbiased reconstruction of
network topology. Brain signals from a public and
freely available EEG dataset were analysed using a
phase synchronization based measure, namely the
phase lag index (PLI) [17], which allows us to estimate
statistical interdependences between EEG time series.
Successively, the MST was used to filter each network
in order to increase comparability between measures
extracted from individual networks. Finally, the k-core
decomposition [18] was applied to disentangle the
hierarchical structure of networks and identify the

central functional core. We hypothesize that each sin-
gle subject can be characterized by an distinctive func-
tional core topology.

2.Material andmethods

2.1.Data set
A public and freely available high-density (64 chan-
nels) EEG dataset [19], consisting of 109 healthy
subjects, was used in this study. Raw data can be
downloaded from the PhysioNet web site (http://
physionet.org/pn4/eegmmidb/). The same dataset
has been previously used for brain computer interface
[20] and biometric applications [9, 10].

EEG signals, acquired with a sampling rate of
160 Hz and referenced to the average of the ear-lobe
electrodes, are organized in several different runs
using resting state, motor movement and imaginary
tasks. For the subsequent analysis we used two resting-
state runs (eyes open and eyes closed), each one lasting
2min.

2.2. Pre-processing
Five nonoverlapping epochs (12 s long, corresponding
to 1920 samples), extracted from the 2 min resting-
state conditions, were analysed for each single subject.
The raw EEG signals were band-pass filtered (without
phase distortion [21]) in the classical frequency bands:
delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), low
beta (13–20 Hz), high beta (20–30 Hz) and gamma
(30–45 Hz).

Figure 1.A schematic representation of the whole procedure. Panels represent (A) selection of rawEEG signals, (B) selection of band-
pass filtered EEG signals, (C) connectivitymatrix containing PLI values, (D) binaryMSTmatrix, (E) binaryMST graph and (F) k-core
structure decomposition. All the schemes were computed using thefile S001R01.edf, which refers to subject 1,first epoch, high beta
(20–30 Hz) band during eyes-open resting-state condition.
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Successively, for each condition (eyes open and
eyes closed), each subject and each frequency band,
the following analysis was performed: (i) functional
connectivity analysis, (ii)MST filtering and (iii) func-
tional core characterization. A schematic view of the
whole procedure is represented infigure 1.

2.3. Functional connectivity analysis
The functional connectivity analysis was performed by
computing pair-wise statistical interdependence
between EEG time series using the PLI [17, 22]. The
PLI, an index of asymmetry of the distribution of
instantaneous phase differences between pairs of
channels, allows us to address common scalp EEG
problems due to signal spreads, linear mixing and
active reference [17].

The PLI, which assumes values in the range from 0
(no interaction, or interaction with zero phase lag) to 1
(maximum interaction), can be computed as follows:

tPLI sign sin 1k| [ ( ɸ( ))] | ( )= á D ñ

where Δf is the difference between instantaneous
phases, tk are discrete steps and 〈 〉 denotes the average
over the time t.

The functional connectivity analysis allows us to
represent the functional interaction between brain
regions as a weighted connectivity matrix, where the
PLI represents the magnitude of the relationship. In
order to validate the results, we compared PLI-based
features with features computed by using another
widely employed phase synchronization measure,
namely the phase locking value (PLV) [23]. Before esti-
mating the PLV the time series were orthogonalized by
means of linear regression analysis as described by
[24, 25] to remove trivial correlations due to field
spread or volume conduction (leakage corrected).

2.4.MSTfiltering
Network analysis has revealed important aspects about
the organization and functioning of the complex brain
system [5]. However, comparison between measures
extracted from empirical networks can yield spurious

results [11]. The use of MST has been recently
proposed as an unbiased method for brain network
comparison [12, 13].

The MST is an acyclic sub-network that connects
all nodes minimizing the link weights. In this study
MSTs are constructed based on the weighted networks
using the Kruskal algorithm [26], starting with the lar-
gest linkweights.

The weights are sorted in a descending order; the
construction of the tree starts using the largest link
weight and successively the following largest link
weight is added. The procedure, preserving the acyclic
condition, continues until all N nodes are connected
with N−1 links. Finally, the constructed MSTs are
binarized (e.g., all weights are assigned a value of one).
Furthermore, the construction of theMST is indepen-
dent of arbitrary thresholds.

2.5. Functional core characterization
It has been shown that the human brain is character-
ized by the existence of a central core, formed by a
densely linked community of the most important
nodes (hubs), responsible for efficient global commu-
nication. In order to identify the central functional
core, the k-core decomposition [18, 27]was applied to
the reconstructed binaryMSTs.

The k-core, which is the largest sub-network com-
prising nodes of degree at least k, is computed by
recursively peeling off nodes with degree lower than k.
The procedure continues until no such nodes remain
in the sub-network. For a full description of the algo-
rithm see [18].

The k-core decomposition analysis was performed
using the Brain Connectivity Toolbox (which is freely
available at the web site https://sites.google.com/

site/bctnet/) for MATLAB [28]. Figures were
obtained using the Toolbox BrainNet Viewer [29].

2.6. Classification
In order to test the k-core distinctiveness property, a
feature vector (consisting of 64 entries), expressing the
coreness value of each node within the MST network,
was defined for each epoch and subject. The coreness
of a node is k if the node belongs to the k-core. For each
band and condition, a total of 545 (5 epochs × 109
subjects) feature vectors were used for the classifica-
tion procedure.

Pair-wise similarity scores between feature vectors
(nodal coreness)were estimated as 1/(1+d), where d
represents the Euclidean distance. Genuine and
impostor scores were successively used to evaluate the
equal error rate (EER) and the area under the ROC
curve (AUC), which allow us to assess the performance
of the proposed approach for each band and
condition.

In order to assess the statistical significance of
recognition rates a nonparametric permutation test-
ing (using 1000 iterations) was used. During each

Table 1.Recognition rates. Recognition rates expressed as EER and
AUC for each frequency band and for both eyes-open (EO) and
eyes-closed (EC) resting-state conditions. In addition, a comparison
with EERs derived from the analysis without the use ofMST (No-
MST) is also reported.

MSTEO MSTEC

No-

MST

EO

No-

MST

EC

Frequency

band EER AUC EER AUC EER EER

Delta 0.429 0.605 0.480 0.541 0.371 0.440

Theta 0.445 0.580 0.441 0.585 0.411 0.424

Alpha 0.354 0.693 0.348 0.711 0.339 0.315

Lowbeta 0.257 0.817 0.240 0.837 0.204 0.229

High beta 0.172 0.905 0.173 0.906 0.114 0.143

Gamma 0.131 0.943 0.130 0.933 0.050 0.072
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single iteration the feature vectors from one subject
were randomly assigned to other subjects, the similar-
ity scores were computed and the recognition rate (in
terms of EER) evaluated. The p-value is given by the
percentage of iterations for which the EER obtained is
lower than the EERobtained in analysis.

3. Results

The results, which represent recognition rates in terms
of EER and AUC, are summarized in table 1. For both
eyes-open and eyes-closed resting-state conditions,
higher recognition rates were obtained in gamma
(EER=0.131 and AUC=0.943 in eyes-open condi-
tion; EER=0.130 and AUC=0.933 in eyes-closed
condition) and high beta (EER=0.172 and
AUC=0.905 in eyes-open condition; EER=0.173
and AUC=0.906 in eyes-closed condition) bands.
Lower recognition rates were obtained in lower
frequency bands. A comparison with the results
obtained from k-cores extracted without the use of the
MST is reported in table 1.

The highest recognition rate (in terms of EER)
achieved with the permutation tests was 0.484, thus
suggesting a statistical significance (p=0.001, expres-
sed as 1/number of permutations) for all the reported
results. In figure 2 we have included a representation
of the k-cores for two representative subjects in both
eyes-closed and eyes-open conditions.

The comparison between PLI- and PLV-based
recognition rates (in terms of EER) shows very similar

results, thus allowing us to validate the reported results
(see table 2).

4.Discussion

Although the present study is based on a new approach
for the detection of individual traits extracted from
EEG signals, the reported results confirm, as recently
suggested [1, 9, 10], that network analysis may be of
help to characterize distinctive functional brain
fingerprint.

The proposed approach introduces two relevant
aspects that considerably add to the current literature
on EEG based subject identificationmethods. The first
aspect is about the identification of a characteristic
sub-network, which is responsible for the efficient glo-
bal brain communication. In contrast to previous
methods based on (i) arbitrary selection of a limited

Figure 2.A representation of the k-cores for two representative subjects for the gamma frequency band.

Table 2.Recognition rates. Recognition rates expressed as EER from
PLI- and PLV-based networks, for each frequency band and for both
eyes-open and eyes-closed resting-state conditions.

PLI based PLVbased

Frequency

band

Eyes

open

Eyes

closed

Eyes

open

Eyes

closed

Delta 0.429 0.480 0.404 0.464

Theta 0.445 0.441 0.403 0.433

Alpha 0.354 0.348 0.348 0.334

Lowbeta 0.257 0.240 0.244 0.235

High beta 0.172 0.173 0.156 0.165

Gamma 0.131 0.130 0.112 0.119
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number of channels or (ii) characterization of the
whole-brain structure, the proposed approach reflects
the role of well known physiological mechanisms.
Interestingly, it has been previously shown [18] that
the use of k-core decomposition allows us to disen-
tangle the hierarchical structure of a network (pro-
gressively focusing on its central core), which
represents a specific fingerprint of the network. The
second important aspect is about the use of the MST.
Indeed, even though network analysis has revealed
important aspects about the organization and func-
tioning of the complex brain organization [5], it has
been highlighted that comparing different networks is
strongly hindered by several methodological issues
[30–32]. In particular, since the number of nodes and
the average degree may have a great influence on net-
work parameters, the comparison between measures
extracted from empirical networks can yield spurious
results [11]. The MST, proposed as an unbiased
method for brain network comparison [12, 13], seems
to solve relevant methodological limitations of pre-
vious works (e.g. sensitivity to alterations in connec-
tion strength). Furthermore, the MST efficiently
captures the essential properties of complex networks.

Moreover, with the use of the PLI, an index of
phase synchronization that reduces the effects of com-
mon problems in scalp EEG, this work tends to limit as
much as possible the introduction of methodological
biases that hinder the use of network measures in the
study of brain organization.

However, the use of these strict and conservative
criteria, which simplify the understanding of physiolo-
gical implications of the findings, may be responsible
for the slightly lower reported classification rates if
compared with previously published papers [9, 10].
This is also confirmed by the results obtained without
introducing the use of the MST (see table 1). Further-
more, the almost identical results obtained from the
two conditions (eyes closed and eyes open) are in line
with the similar spatial representation of k-cores from
the same subjects (seefigure 2).

Despite the promising results, our study suffers
from some limitations that need to be discussed. First,
since high-frequency (>20 Hz) scalp EEG compo-
nents overlap withmyogenic activity [33], it is difficult
to estimate to what extent the role of high-frequency
bands is due to neural sources or to muscle con-
tamination. Second, the used dataset is noisy (which,
however represents a more useful approximation for
real life applications) and EEG signals are acquired
during a single session (which could tend to over-
estimate the recognition rates).

Therefore, it seems necessary that future works
focus their attention to design well controlled exper-
imental setups that can help in to disentangle neural
sources from artefact contaminations and to investi-
gate possible changes induced by multiple session
recordings. It would also be of great interest to investi-
gate the use of tools that may allow us to filter out

muscle activity from scalp EEG (see [33] for a compre-
hensive review).

5. Conclusions

The proposed approach, based on the detection of
distinctive functional fingerprints (core sub-network),
may help in elucidating crucial mechanisms related to
subject-specific EEG traits. Furthermore, the reported
findings may be of great impact for both personalized
medicine and bioengineering applications as bio-
metric and BCI systems.
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