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Abstract In video-surveillance and ambient intelligence

applications, head-pose estimation is an important and

challenging task. Basically, the problem lies in assessing

the pose of the head according to three reference angles,

that indicate the head rotation with respect to three

orthogonal axes, and are named roll, yaw, and pitch angles.

The problem becomes particularly difficult if only 2D

video-sequences or still images are available, thus infor-

mation about the depth of the scene is missing. This makes

the computation of the pitch angle very difficult. State-of-

the-art methods usually add the information on the pitch

angle separately, and this makes them strongly dependent

on the hardware used and the scene under surveillance.

Moreover, some of them require large training sets with

head poses data. Finally, the extraction of several features

from the detected face is often necessary. Since head-pose

estimation is only a (small) part of a video-surveillance

system as a whole, it is necessary to find novel approaches

which make the head-pose estimation as simple as possible,

in order to allow their use in real-time. In this paper, a

novel method for automatic head-pose estimation is pre-

sented. This is based on a geometrical model relying on the

exploitation of the Vitruvian man’s proportions and the

related ‘‘Golden Ratio’’. Our approach reduces the number

of features extracted, avoiding the need for a training set as

well as information on the hardware used or the scene

under control. Simple ratios among eyes and nose posi-

tions, according to the assumed ‘‘Golden Ratio’’, are used

to compute, in particular, the pitch angle. Proposed method

performs competitively with respect to state-of-the-art

approaches, without requiring their working constraints

and assumptions.

Keywords Face detection � Head-pose estimation �
Face recognition � Biometrics

1 Introduction

Head pose estimation is a fundamental task for face rec-

ognition algorithms, ambient intelligence applications, and

video-surveillance systems working in uncontrolled envi-

ronments [5, 7, 23]. The problem consists of assessing the

pose of the head according to three reference angles that

indicate the head rotation with respect to three orthogonal

axes, namely, roll, yaw, and pitch angles (Fig. 1). Thanks

to these angles, it is possible to evaluate how much a

certain head pose is far from another one, by using

appropriate distance functions [20].

According to the taxonomy proposed in the recent sur-

vey on head pose estimation algorithms, namely, Murphy-

Chutorian and Trivedi [20], head pose estimation approa-

ches can be subdivided into: (1) appearance template-

based, where each face image is horizontally reverted and

the symmetry degree with respect to the vertical axis along

the xy reference plan must be assessed [15]; (2) feature

tracking-based, where spatial features are extracted and

tracked in a video-sequence. Experiments have shown that

these methods are highly accurate but unreliable if not

appropriately ‘‘initialized’’ at a known head-pose [10, 11,
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26]; (3) moment-based, where a tessellation is projected on

the face image. The three parts of the tessallation con-

taining eyes and nose are selected. From each part, a

moment-based feature is extracted and used for detecting a

discrete set of head poses [18, 21]; (4) neural regression-

based, where a large training set is needed because the

main task of head poses learning is left to a neural network

[4, 16, 19, 30]; (5) geometrical, which are based on the

relative position of at least five features along eyes, nose

and mouth [14, 27, 29]. Among them, neural regression-

and feature tracking-based methods have shown the best

accuracy in the yaw, pitch and roll angles estimation. These

complex methods lead to serious limitations in terms of

head pose initialization, and the collection of an appro-

priate training set of possible head poses. However, the

following issues affect current approaches [14]:

• Head pose is estimated by assuming an incremental

variation of the facial position during the video-

sequence [10, 11, 26].

• Initial head pose in video-sequence is known [10, 11,

26].

• Scene calibration is required and several pieces of

information must be extracted about the adopted

camera. This information is necessary for the compu-

tation of the pitch angle [14, 29].

• Some facial features need manual detection for obtain-

ing reliable estimations (e.g. eyes and nose position).

• The head is supposed to rotate around only one axis at a

time (the algorithm is not able to estimated more than

one angle at a time).

• A large and representative training set is required (for

neural regression-based methods, and methods based

on graph-based representation of the human face).

• Some methods suffer from a high computational

complexity (appearance-based).

On the basis of the above considerations, there is room

for improving and proposing novel methods for head pose

estimation. In particular, geometrical approaches appear

more suitable for general purpose applications, that is, for

still images and video-sequences. In fact, they require a

very small set of features (usually eyes, nose, and mouth

locations) and are very easy to implement and integrate in a

face recognition system. Unfortunately, geometrical

approaches have shown a much worse performance than

method commonly used for still images, namely, neural

regression-based, and for video-sequences, namely, feature

tracking-based. Despite this fact, geometrical approaches

deserve attention. Firstly, they do not need training set.

Secondly, they do not need head-pose initialization. On the

other hand, they are weak, as feature tracking-based

methods, when information about the depth of the scene or

camera characteristics is missing (neural regression-based

methods try to extract this information by a large training

set of images).

With regard to above pros and cons of geometrical

approaches, we propose a novel model of the human head

where relationships among eyes and nose are ruled by the

concept of ‘‘Golden Ratio’’. The ‘‘Golden Ratio’’ is the

proportionality constant adopted by Leonardo Da Vinci in

his master-work called ‘‘The Vitruvian Man’’ [6]. This is

largely used in dentistry and plastic surgery as it represents

the proportions and harmony of the human body [8, 3, 12,

24]. It is easy to find several approaches to assess the

human face beauty, based on the Vitruvian man’s propor-

tions. These are motivated by that ‘‘Golden Ratio’’ is not

related to a merely ideal assumption, but it occurs in the

natural proportions of universally recognized as ‘‘beauti-

ful’’ people. For example, Perseo [22] computes some

ratios among anthropometric measurements of the face of

some celebrities (90 Caucasian male and female), univer-

sally considered as beautiful. Other papers [3, 8, 24, 12]

stated that ‘‘beauty’’ is due to proportions, and in particular,

to the distance of these proportions from the Golden ratio.

However, to the best of our knowledge, no work adopted

the ‘‘Golden Ratio’’ for estimating the head pose. The main

innovation of this method is that computation of the pitch

angle can be done by a very simple way, according to the

assumed ‘‘Golden Ratio’’. Three other advantages over the

state-of-the-art approaches are hence pointed out: (1) it can

be used for both still images and video-sequences; (2)

neither information about the scene under surveillance, nor

camera parameters or characteristics are required; (3) no

training set of possible poses is necessary. In order to show

these clear advantages, we firstly show the performance of

state-of-the-art algorithms, which can be considered as an

Fig. 1 Stylised head with the three co-ordinate axes and the three

angles of yaw, pitch and roll
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‘‘upper bound’’, as reported in [20]. They are tested on

scenarios where they can work at their best, with a large

training set for neural regression-based methods, and

information about the scene depth and the camera, as well

as the possibility of head pose initialization, for feature

tracking-based methods. Reported results show that,

although this ‘‘favourable’’ scenario for state-of-the-art

methods, the proposed one exhibits a performance similar

or greater, for both still images and video-sequences.

This paper is organized as follows. Section 2 discusses

the current performance of state-of-the-art on head pose

estimation. Section 3 describes the proposed model and

algorithm. Section 4 reports some experimental results.

Section 5 concludes the paper.

2 Head pose estimation performance of state-of-the-art

methods

The aim of this section is to point out which is the current

performance ‘‘upper bound’’ for head pose estimation

algorithms and which are the constraints and requirements

needed to reach it. These constraints and requirements are

very limiting for a general purpose application, we want to

motivate the need of novel and simple algorithms which

overcome these limitations.

It is not our aim to do another survey on current

algorithms, because a very exhaustive work has been

already done by Murphy-Chutorian and Trivedi [20]. For

the scope of this section, it is sufficient to point out that

the best algorithms for still images and video-sequences

are not general purpose. In other words, whilst neural

regression-based approaches have shown very good results

for still images, feature tracking-based approaches

achieved the best results for video-sequences. When we

talk about ‘‘best results’’, we mean the lowest values in

terms of commonly used performance parameters which

are:

1. Mean absolute error (MAE) [20]:

MAE ¼ 1

N

XN

i¼1

jai � GTi� ð1Þ

where ai and GTi are the considered angle (yaw, roll, pitch)

and the correspondent ground truth, and N is the overall

number of frames.

2. Root mean square error (RMSE) [2]:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ðai � GTiÞ2
vuut ð2Þ

3. The classification accuracy (CA) [20]:

CA ¼ n

N
100; ð3Þ

where n is the number of frames for which extraction of all

facial features has been possible.

Results reported in [20], refer to several data sets. The

majority of methods use two data sets, namely Pointing’04

and BU Face Tracking data sets, which have been also

adopted for testing our method in Sect. 4.

The Pointing ’04 Head Pose Image Database [10] is

made up of 15 image galleries related to 15 different per-

sons. Each gallery contains two sequences of 93 face

images. Fifteen persons in the data set exhibit different

characteristics in terms of age, eye glasses, skin colour.

Since a quantitative performance of head pose estimation

algorithms is necessary, a ground truth is given in terms of

yaw and pitch angle, both discretized between -90� and

?90� (13 values for yaw and 9 values for pitch). The

ground truth has been obtained by constraining captured

subjects to look at several markers in the scene. Roll angle

is not given. Some examples are shown in Fig. 10.

The Boston University (BU) Face tracking dataset [4] is

made up of 72 video-sequences of five subjects. The first

45 sequences (9 per subject) have been captured under

uniform lighting and another 27 sequences (9 per subset, 3

subjects) under different lighting variations. Each sequence

Table 1 Analysis on still images (Pointing’04 dataset)

Method (nonlin. regress. with neural nets) Mean absolute error Classification accuracy # of discrete poses

Yaw Pitch

Stiefelhagen [26] 9.50� 9.70� {52.00 %, 66.30 %} {13, 9}a,b,d

Gourier et al. [11] 10.10� 15.90� {50.00 %, 43.90 %} {13, 9}a,c,d

Results of state-of-the-art methods is from [20] and are related to the automatic localization of the eyes position
a Poses with: (0, pitch), (yaw, 0)
b 80 % of data used for neural network training
c 50 % of data used for neural network training
d Degree of freedom : 2
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is made up of 200 frames during which several free rota-

tions and translations of the head have been taken. Ground

truth is given in terms of yaw, roll and pitch angles,

evaluated through a magnetic sensor. Some examples are

shown in Fig. 12a.

Tables 1 and 2 report the best results of Murphy-Chu-

torian and Trivedi [20] about still images and video-

sequences, and the related methods and references. We also

indicated in these tables the requirements and constraints

under which the reported performance has been obtained.

For experiments reported in Table 1, only images where

only one reference angle is allowed to vary are taken into

account. This means that only 13 images at several yaw

angle’s values, and only 9 images at several pitch angle’s

values are considered, whilst the pitch and yaw angles are

set to 0�, alternately. As we pointed out, neural regression-

based methods exhibited the best performance so far1.

However, some constraints and requirements must be

pointed out. For example, the Stiefelhagen [26] method

required the 80 % of Pointing’04 images for neural net-

work training. In other words, information about the depth

of the scene and the hardware characteristics are derived

during the neural network training by using a very large

amount of images. This means that, if the environment

changes, the neural network must be re-trained, and, if less

data are available, the performance could likely get worse.

By observing the performance of the Gourier method, we

have a possible suggestion about the impact of the data

amount for training on the final performance. In fact, the

Gourier method [11], which is basically similar to the

Stiefelhagen one (main difference is that an associative

memory is used instead of a feed-forward net), has been

trained with only 50 % of Pointing’04 data, leading to a

performance significantly worse than that of the method by

Stiefelhagen. Finally, both methods allow only a degree of

freedom equal to 2, that is, the head is allowed to rotate

only around two axes, related to yaw and pitch angles (roll

angle is always assumed to be zero) [11, 20, 26]. In other

words, they cannot be used to estimate a head pose related

to the contemporary rotation around all three reference

axes.

With regard to video-sequences, we may notice that

feature tracking-based methods exhibit a very high per-

formance in terms of MAE, whilst no CA values are

available [20]. Instead, we can point out three important

assumptions which allow these methods to work: (1) the

pose is allowed to change very smoothly frame-to-frame;

(2) the pose is supposed as known at the starting frame (a

frontal pose is assumed); (3) the head pose is estimated on

a very short period of time, during which there is no

significant variation in the subject’s behaviour. This last

constraint is called ‘‘anti-drift assumption’’ in [20], because

if it is not respected, the performance ‘‘drifts’’, that is, gets

gradually worse. Moreover, these methods require infor-

mation about the depth of the scene, in order to estimate the

pitch angle correctly. As shown in Table 2, if this infor-

mation is available, they are very effective. However, it is

worth pointing out that, if the working environment

changes, the whole system needs a novel ‘‘calibration’’

phase in order to work properly. Finally, it is evident that

feature tracking-based methods cannot be used for evalu-

ating the head pose in still images.

Therefore, despite the noticeable performance of state-

of-the-art algorithms in still images and video-sequences,

their application is limited because of the assumptions and

the constraints we pointed out here, in particular, depen-

dence on the working environment is crucial. Moreover,

they are complex methods, which need a preliminary, not

trivial, feature extraction and processing, such as a Prin-

cipal Component Analysis, Gabor wavelets, SIFT

descriptors, or making assumptions about the prior

knowledge of 3D face shape [20].

Designing a simple and effective way to estimate the

head poses, possibly for general purpose applications, is

still matter of on-going research. This is the scope and goal

of the present paper, which proposes an alternative way to

estimate the head pose, by exploiting the natural human

proportions pointed out by the ‘‘golden ratio’’.

3 The proposed model

3.1 The Vitruvian man

Previous studies on mathematical human proportions have

been the starting points of our work. The most relevant one

1 We did not report other methods because the strong performance

difference is evident from [20].

Table 2 Comparison of results on BU face tracking data set

Method

(tracking)

Mean absolute

error

Assumptions Automatic

feature

localization
Yaw Pitch Roll

Cascia et al. [4] 3.3� 6.1� 9.8� –a,b,c Yes

Xiao et al. [30] 3.8� 3.2� 1.4� –a,b,c Yes

Morency et al.

[19]

5.0� 3.7� 2.9� –a,b,c Yes

Lefèvre and

Odobez [16]

4.4� 3.3� 2.0� –a,b,c Yes

Lefèvre and

Odobez [17]

4.6� 3.2� 1.9� –a,b,c Yes

a Continuous video assumption
b Initialization assumption
c Anti-drift assumption
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is the so-called ‘‘Vitruvian Man’’ by Leonardo Da Vinci

(Fig. 2). This picture, which was made around 1490 AC,

represents the canonical human proportions set by a Roman

architect, Marco Vitruvio Pollione, during the first century

BC, and reported in his ‘‘De Architectura’’ in 25 AC.

Leonardo Da Vinci (‘‘De Divina Proportione’’), extended

this study to human face proportionality. In Fig. 3, we

reported two pictures related to these investigations.

Recently, it has been shown that the ‘‘perfect’’ propor-

tionality of the Vitruvian man is not a mere ‘‘ideal’’

condition of the face beauty; in fact, it also occurs in real

faces [22].

The mathematical concept behind these works is the so-

called ‘‘Golden Ratio’’, as shown in Fig. 4. In few words,

the concept consists in recursively subdividing a certain

line, which may be represented by the duration/pitch of

musical notes, or the size of physical objects.

The ‘‘Golden ratio’’ (phi) is a value that represents the

proportionality constant of a line divided into two segments

a and b, such that: / ¼ aþb
a
¼ a

b
: In other words, we have to

solve the following quadratic equation:

/þ 1 ¼ /2 ð4Þ

whose solution is:

/ ¼ 1þ
ffiffiffi
5
p

2
¼ 1:61803399. . . ð5Þ

/ (phi) is known as the ‘‘Golden Ratio’’2.

In the following section, we explain how we used this

value in order to estimate head poses into our geometrical

model. In other words, how we computed roll, yaw and

pitch angles.

3.2 A head pose estimation model derived

from the Vitruvian man

To the best of our knowledge, no approaches, among the

existing ones, used the Vitruvian man’s proportions in

order to estimate the head-pose or derive a geometrical

model to this aim.

Figure 5 illustrates the proposed, basis model exploiting

the Vitruvian man’s proportions. Eyes position

Fig. 2 Leonardo da Vinci’s pictures: a ‘‘The Vitruvian Man’’, about

1490 da Vinci [6]; b zoom on the face of a

Fig. 3 Leonardo da Vinci’s pictures: a Face and eyes proportions,

about 1489; b head proportions, about 1488–1489

Fig. 4 Definition of ‘‘Golden Ratio’’

Fig. 5 Proposed model of a frontal head

2 Greek letter / recalls the initials of the sculptor Phidias, who used

the ‘‘Golden Ratio’’ to create the Parthenon sculptures.
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(x-y coordinates) is the first, necessary requirement for all

angles computation. From eyes, the ‘‘Golden Ratio’’ is

exploited in locating the point of the ‘‘ideal’’ nose location

(xFN, yFN), according to the Vitruvian man’s proportion.

This point can be positioned along the line orthogonal to

the one joining eyes, and passing through the middle point

of that line (x0, y0). The distance from this point is given by

B, as shown in Fig. 5.

Therefore, given the interocular distance D, since

B = |y0 - yFN|, we assumed the following relationship

ruled by the proportionality constant named ‘‘Golden

Ratio’’:

D

B
¼ /) B ¼ D

/
� 0:618D; ð6Þ

where / ¼ 1:61803399. . . is the ‘‘Golden Ratio’’.

According to this relationship, we assume the existence

of what we called ‘‘Golden Area’’ pictured in Fig. 5. The

‘‘Golden Area’’ is a heuristic area of search for the nose

detection, which lies in the image plane, given by the circle

centred on the ideal nose position. When face rotates along

the x- or y-axis, the nose position cannot be out of this

circle, unless the pose is near-profile. The existence of the

‘‘Golden Area’’ is motivated by the fact that, if the face is

assumed to be a ‘‘rigid body’’, the size of the circle is such

that the assumed Vitruvian’s man proportions between eyes

and nose distance keep hold. This assumption is strong,

because the nose, in practice, can be out of the Golden

Area. However, in this case, face is assumed to be in a non-

frontal position. This means that our model is designed to

estimate how much a head pose agrees with the assumed

proportions among eyes and nose on a frontal pose.

Therefore, head-poses very ‘‘far’’ from the frontal view

will be not estimated, because the nose can be out of the

‘‘Golden Area’’ in these cases.

Moreover, it can be noticed that if the nose is on the

border of this circle, at least one of the features is hardly

locatable. As an example, we show in Fig. 6 four head

poses where the nose location is near the limits allowed by

the estimated eyes position D and the related circle whose

radius is D// (the images are taken from Pointing’04 data

set also used for experiments). It is easy to notice that at

least one of the eyes is not easy to locate, even if it is not

completely occluded.

The advantage of the ‘‘Golden Area’’ is also practical. It

gives a clear insight about the region where the nose must

be searched. In particular, it is useful with algorithms like

the Viola–Jones one [28], that we adopted for also

detecting face and eyes in the image [13]. Such algorithms

tend to give several possible nose locations, thus limiting

the search over the ‘‘Golden Area’’ is a reasonable heu-

ristic. Finally, the ‘‘Golden Area’’ allows the computation

of the admissible range of pitch, roll and yaw angles.

By following the above assumption, roll, yaw and pitch

angles can be easily computed as follows.

3.2.1 Roll angle computation

According to Fig. 7, roll angle is computed as:

Roll ¼ arctg
dy

dx

� �
ð7Þ

where dx = xL - xR and dy = yL - yR (Fig. 7).

Depending on the sign of dy, detectable roll angles are:

(-90�, ?90�).

3.2.2 Yaw angle computation

Let (xN, yN) be the coordinates related to the nose location.

According to Fig. 8, yaw angle is computed as:

Fig. 6 Four examples (picked from Pointing ’04 Head Pose Image

Database) of ‘‘extreme’’ poses in which nose coordinates are out of

the circumference centred around the ‘‘ideal’’ nose location (the

‘‘Golden Area’’): top-left (yaw, pitch) = (?30�, ?45�); top-right

(yaw, pitch) = (?30�, -45�); bottom-left(yaw, pitch) = (-30�, ?

45�); bottom-right (yaw, pitch) = (-30�, -45�). It is easy to see

that some facial features (in particular, the left/right eye) are not

easily detectable. It is worth remarking that ground truth in the

Pointint ’04 data set is not accurate thus indicated values for the head

pose could be more than those reported

Fig. 7 Roll angle computation
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Yaw ¼ arctg
dx

dy

� �
ð8Þ

where dx = xN - x0 and dy = yN - y0 according to the

coordinate axes of Fig. 8.

The maximum absolute value of the yaw angle corre-

sponds to a nose location exactly coincident to the

(xNMAX, yNMAX) point. This point is located on the cir-

cumference centred around the ‘‘ideal’’ nose location given

by the Vitruvian man’s proportion, that is, the circumfer-

ence of the ‘‘Golden Area’’: xNMAX ¼ yNMAX ¼ D
/ :

Therefore:

YawMAX ¼ arctg
dx

dy

� �
¼ arctg

D=/
D=/

� �
¼ 45�

Therefore, detectable Yaw angles will be in the following

interval: (-45�, ?45�).

It is worth noting that the above methodologies do not

explicitly require the ‘‘Golden Ratio’’ assumption to com-

pute roll and yaw angles [14, 25]. But it becomes important

for estimating the nose location reliably, thanks to the

assumption of the ‘‘Golden Area’’ existence. Unreliable

nose estimation makes the yaw angle computation highly

inaccurate. It is worth remarking that none of state-of-the-

art geometrical approaches exploited the ‘‘Golden Ratio’’

for assessing proportions among eyes and nose locations,

evaluating the area for the reliable location of the nose

(‘‘Golden Area’’), and the possible range of reliable esti-

mation of the yaw angle. For example, Horprasert et al.

[14] require five features to be estimated. Geometrical

relationships among 3D components are set on the basis of

them (yaw and pitch). Our method, instead, use two basic

features (eyes positions) and the other steps are all based on

the hypothesis above on the Vitruvian man proportions.

3.2.3 Pitch angle computation

The main innovation of this paper is the computation of the

pitch angle, which is the most difficult to compute in most

head pose estimation approaches, since it requires knowl-

edge about the ‘‘depth’’ of the scene. In other words, 3D

information, along the axis orthogonal to the image plan

(xy), is necessary.

State-of-the-art methods solve this problem by adding

information about the used camera [20]. Since it is nec-

essary to know a reference distance between the xy plan

and another point along the z axis (Fig. 9), the usual

solution is to consider the focal point of the camera.

However, this approach makes the overall head pose esti-

mation algorithm strongly dependent on the adopted

hardware and scene under surveillance. Alternatively, other

methods leave the task of learning information about the

scene depth to a certain classifier (e.g. a neural network),

by providing a very large set of training head poses.

The solution proposed here overcomes these limitations.

Figure 9 shows our face model, where the pitch angle is

given by:

Pitch ¼ arctg
dy

D

� �
ð9Þ

where dy ¼ yN � D
/ according to the same coordinates axes

in Fig. 9.

We assumed that the centre of rotation for pitch lies at a

distance behind the nose equal to the interocular distance.

This means to assume that, on a frontal facial position, the

Fig. 8 Yaw angle computation

Fig. 9 Pitch angle computation
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golden ratio is maintained between the distance of the

centre of rotation from the nose (D), and the height of the

eyes with respect to the z-axis, where the nose is supposed

to lie D
/

� �
.

Accordingly, the maximum detectable value corre-

sponds to the nose location equal to ð0; 2 � yNMAXÞ: the nose

must fall on the circumference of the ‘‘Golden Area’’, or is

coincident with the hypothesised eyes location. This leads

to the following value:

PitchMAX ¼ arctg dy
D

� �
¼ arctg

D=/
D

� �
¼ 31:716�

Therefore, detectable pitch angles are in the interval

(-31.716� , ?31.716�).

Some examples of ‘‘extreme cases’’ of yaw and pitch

angles according to our model are shown in Fig. 6. In all

cases, it is possible to notice that at least one of the features

is hardly detectable. At the same time, it possible to see

that the implication of limits pointed out are not crucial,

since head poses which fall out of the ranges we analyti-

cally derived are clearly near-profile views, thus the

assumption behind the ‘‘Golden Area’’ does not hold.

3.3 The proposed method: discussion

The proposed head pose estimation method can be

described by the following points:

1. Image is input of the face detector.

2. Face location is detected.

3. Eyes positions are detected.

4. If eyes are not found, the image is disregarded and

the next one is processed (item 1).

5. Interocular distance D is computed according to the

eyes positions.

6. Roll angle is computed according to Eq. (4).

7. Face is rotated according to the estimated Roll angle.

8. The location of the ideal nose is computed, and the

‘‘Golden Area’’ related with it is defined.

9. Nose position is detected inside the ‘‘Golden Area’’.

10. If nose is not found, the image is disregarded and the

next one is processed (item (1)).

11. Yaw and pitch angles are computed according to Eqs.

(5, 6).

12. The triplet fRoll; Yaw;Pitchg defines the head-pose.

The method description points out the following

advantages:

• head-pose estimation can be done on still images but

also frame-by-frame on video-sequences. As a conse-

quence, assumptions to feature tracking-based algo-

rithms, where incremental variation of the facial

position during the sequence is supposed, are not

necessary;

• initial head pose in video-sequence is unknown, thus

head pose initialization is not required;

• the pitch angle is estimated without information about

the scene or the camera adopted;

• all facial features are automatically computed (e.g. eyes

and nose positions);

• head can rotate around the three reference axes freely.

One strong limitation in the accurate estimation of yaw

and pitch angles is the foreshortening. In fact, any non-zero

yaw will lead to incorrect pitch estimation. Foreshortening

will also lead to issues with the golden area. For larger yaw

angles B become lower, hence impacting on the nose

position searched on the Golden Area.

This is also the main reason for which basic geometric

method require more than three features (we used only two

features, whilst the nose position is estimated from a search

on the ‘‘Golden Area’’). This will be shown in the Sect. 4

and due to the fact that our model is designed to estimate

how much a head pose agrees with the assumed propor-

tions among eyes and nose on a frontal pose. After rotating

the face on the basis of the roll angle, yaw and pitch angles

are estimated on the basis of the ‘‘Golden Area’’ existence.

As stated previously, this is a heuristic area of search based

on the proportions given by the Vitruvian man: in other

words, we assume that the proportions of a the human face

are kept until the head pose is far from the frontal view.

When the nose is out of the Golden Area, the head pose

is far from the frontal pose: in this last case, head pose cant

be estimated with high precision. By increasing the value

of yaw angle from 0� to 45�, the final estimation will be

progressively worse, and completely unreliable when the

yaw angle is more than 45� (in practice, one of the eyes

cannot be detected).

This makes clear why existing geometrical approaches

require at least five features Horprasert et al. [14, 27, 29].

Geometrical relationships among 3D components are set

on the basis of these features (for estimating yaw and pitch

angles). On the other hand, our method uses only two basic

features (eyes positions) and the other estimation steps are

based on the hypothesis above on the Vitruvian man

proportions.

According to these observations, we are not claiming

that this method is the best one, but that this is a simple

method, very easy to implement, without the need of

substantial information about the scene, which can be

suitable for those applications that do not require to know

the ‘‘exact’’ head pose angles values, without a substantial

weighting of the system requirements.

To sum up:

• Our method is basically designed to estimate how much

a head pose agrees with the assumed proportions

among eyes and nose on a frontal pose.
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• However, it can be also used for head pose estimation,

by taking into account that, due to foreshortening, its

accuracy decreases as the head pose gets far from the

frontal one. Thus the estimation can be useful if it is not

required to be very reliable.

• It uses only two features to be detected or manually or

automatically (depending on the application).

• The ‘‘Golden Area’’ is a heuristic area of search, and its

definition is only motivated by the our assumption

about the existence of the human proportions defined

by the Golden Ratio, that the face appearance should

follow until the head pose is far from the frontal view.

• No additional information is required beside the eye

positions (initial head pose, camera calibration with

respect to the scene, etc.). Processing is done frame-by-

frame in case of video-sequences.

4 Experimental results

4.1 Data sets

Performance of the proposed system have been evaluated

on three benchmark data sets: Pointing04 [10], BU Face

Tracking [4], and HPEG [1].

Pointing04 is used for assessing the performance on still

images (Fig. 10), whilst BU Face Tracking on video-

sequences (Fig. 12a). As shown in Sect. 2, these are the

most used data sets, and allowed to set a sort of ‘‘upper

bound’’ for the performance of state-of-the-art algorithms.

Therefore, it is interesting to investigate at which extent the

proposed method can reach such ‘‘upper bound’’.

HPEG data set is relatively novel, with a very precise

ground truth which may also allow the estimation of the eye

gaze (out of the scope of this paper) on video-sequences.

Investigating our method performance on this data set is

hence a challenging task, by considering that fine head pose

estimation is an environment typically difficult for geo-

metrical approaches. HPEG data set is made up of 20 video-

sequences subdivided into two different sessions. The first

one is designed for evaluating exactly the head pose; the

second one is aimed to the eye gaze estimation. In each

session, 10 subjects are captured. Different head rotations

are allowed. The ground truth is given in terms of yaw and

pitch angles, and computed thanks to a semi-automatic

labelling process, based on three leds located around the

subject’s face. Some examples are shown in Fig. 13a.

Experiments carried out on the above three data sets are

aimed to point out that our algorithm is fully general-pur-

pose, that is, it can work well on both still images and

video-sequences and does not require constraints and

assumptions behind other methods.

4.2 Experimental protocol

In order to test the proposed method, we developed the

architecture described in Fig. 11. Face image extraction is

frame-by-frame. Face detection [9] and facial features

extraction exploits the OpenCV version of Viola–Jones [28]

framework3. In all cases, facial enhancement step [31] has

not been necessary, since the quality of images and frames

was good enough for all data sets taken into account.

The whole processing chain has been explained in the

previous section. Detection steps are performed by a spe-

cific Viola–Jones classifier. Thus, three Viola–Jones clas-

sifier are trained: one for face, one for eyes, one for nose.

Right and left eyes are detected separately.

In order to evaluate the goodness of fRoll; Yaw;Pitchg
triplet, we used the parameters proposed in [2, 10], already

described in Sect. 2 Beside the use of well-known bench-

mark data sets, these commonly adopted parameters can

facilitate comparison between our method and others. To

sum up, the adopted metrics are:

1. Mean absolute errror (MAE) [20].

2. Root mean square error (RMSE) [2].

3. Classification accuracy (CA) [20].

Actually, since we did not claim any novelty about the

automatic facial features extraction phase (we used the Viola–

Jones algorithm), CA has no intrinsic meaning of the perfor-

mance metrics. Its aim is to point out the dependency of any

geometrical approach from the feature extractor. In other

words, this parameter should help in highlighting the optimal

3 An example of real-time use of our system can be found on the web

at http://prag.diee.unica.it/amilab/en/node/60

Fig. 10 Sample images from Pointing’04 dataset
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performance of our approach (when an error-free, e.g. manual

feature extraction is done) against the performance degrada-

tion due to the feature extraction algorithm adopted.

4.3 Results

In order to explore at which extent the performance of the

proposed method can reach the current ‘‘upper bound’’ set

by the best state-of-the-art algorithms, we considered two

application scenarios: still images and video-sequences.

The aim of this section is to show our algorithm benefits,

although all state-of-the-art performance have been repor-

ted under ‘‘favourable’’ working conditions, where all their

assumptions and working constraints are respected.

4.3.1 Performance on still images

Table 3 reports the performance of our algorithm on the

Pointing’04 data set. The first two rows have been obtained

by following the same protocol and images adopted in the

papers cited in [20] and reported in Table 1. For these

experiments, only images where only one reference angle

is allowed to vary are taken into account. This means that

only 13 images at several yaw angle’s values, and only 9

images at several pitch angle’s values are considered,

whilst the pitch and yaw angles are set to 0�, alternately.

Automatic feature extraction is always done.

In order to investigate the impact of eyes detection

accuracy on the performance of our algorithm, we con-

sidered poses where both yaw and pitch angles of the

ground truth were not zero, and compared results by using

manual and automatic feature extraction. Related values

are reported from the third row of Table 3. We added poses

with combinations of angles far from the frontal images

and evaluated MAE and CA in the case of manual and

automatic feature extraction. Then, we decreased the

number of poses and reached the ideal case of near frontal

images, where pitch and yaw were both zero. A gradual

decrease of MAE and increase of CA are evident. The

performance obtained by manual and automatic features

extraction is comparable, and goes down 5� of MAE when

the head pose of near frontal face is estimated, a require-

ment of head pose estimation algorithms cited in [20].

On the other hand, Table 3 points out the problem of

foreshortening. It is evident from the increase of error rate

from near-frontal views to near-profile views, indepen-

dently of the eyes detection method.

It is worth remarking that this task is more difficult, and

much more realistic, than that where yaw and pitch angles

are evaluated separately. From Table 1 and the first two

Table 3 Performance of the proposed method by varying the poses from Pointing’04 data set and switching the feature detection modality

(manual/automatic)

Mean absolute error Classification accuracy # of Discrete poses Automatic feature localiz.

Yaw Pitch

8.00� 13.40� {53.85 %, 55.55 %} {13, 9}[1] No

13.22� 13.75� {38.97 %, 44.44 %} {13, 9}[1] Yes

9.60� 13.60� 100.00 % 35[2] No

12.61� 13.68� 58.67 % 35[2] Yes

7.12� 8.76� {100.00 %, 100.00 %} {25[3],21[4]} No

9.83� 9.45� {69.60 %, 69.52 %} {25[3],21[4]} Yes

4.50� 3.00� 100.00 % 1[5] No

3.45� 4.74� 93.33 % 1[5] Yes

The number of discrete poses analysed (fourth column) is as follows: ½1�fð0; pitchÞ; ðyaw; 0Þg:½2� jyawj � 45�; jpitchj � 30�ð Þ:½3�
jyawj � 30�; jpitchj � 30�ð Þ:½4� jyawj � 45�; jpitchj � 27�ð Þ:½5�Frontal pose only: (yaw, pitch) = (0, 0). Each classification accuracy in braces has

been obtained as function of the corresponding number of discrete poses reported in braces in the next column

Fig. 11 Architecture of the

proposed system. By extracting

coordinates of eyes and nose,

the system is able to compute

Roll, yaw and pitch angles by

exploiting the ‘‘Golden Ratio’’

as basic relationship among

such features
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rows of Table 3, the comparison of MAE values points out

that the performance of our method is slightly less than that

of the upper bound given by the state-of-the-art, namely,

[11, 26]. This is a good evidence of the effectiveness of the

model based on the Vitruvian man’s proportions. The most

relevant is still on the pitch angle.

4.3.2 Performance on video-sequences

The second set of experiments have been done on two data

sets designed for head pose estimation on video-sequences:

BU Face Tracking data set and HPEG data set. For these

experiments, only automatic feature extraction have been

applied (commonly used algorithms have been used as

explained in Sect. 4.2)

Table 4 reports very low MAE values, and shows that

our algorithm is fully general-purpose. Overall, it is sur-

prising how a very simple model like ours allowed a good

estimation of the pitch angle without any information about

the scene depth [see. Eq. (6), Fig. 8]: this is the main

innovation achieved thanks to the proposed method.

Figure. 12b–d shows the estimation of yaw, pitch and

roll angles against the ground truth for the video-sequence

called ‘‘vam2’’, during the online operations of our esti-

mation algorithm. A simple visual analysis shows the low

deviation from the ground truth. This points out that our

method, based on a simple frame-by-frame computation, is

quite suitable for video-sequences, and fully support the

frame-rate of 30 fps used for capturing the BU data set.

MAE is B5�, as required for ideal head pose estimation

algorithms [20]. Again, we remark that this performance

has been achieved without training set, head-pose initiali-

zation, and information on the scene depth and the char-

acteristics of the camera used for capturing video-

sequences.

With regard to HPEG data set, Fig. 13b–c shows esti-

mated angles and ground truth for the first sequence of the

‘‘a’’ session. It is worth noting that ground truth is very

accurate. The performance of our algorithm is very good. A

visual inspection of Fig. 13b–c points out some frames

where estimation is not accurate, and it occurs when yaw

and pitch angles are varied together: in other words, the

head is moving from frontal view to a profile-like view,

with a high degree of variation along the vertical axis

(pitch angle variation), at the top and at the bottom.

Especially in the case of head movement from the top to

the bottom, it is worth noting that eyes are partially

occluded by the eyelids, thus making the eye detection

more difficult. As a consequence, an inexact location of

Table 4 Comparison of results on BU Face Tracking data set

Mean asbsolute

error

Classification

accuracy

Automatic

feature

localization
Yaw Pitch Roll

Proposed

method

4.9� 5.4� 3.5� 80.7 % Yes

‘‘Upper

bound’’

[30]

3.8� 3.2� 1.4� NA Yes

Fig. 12 a Sample images from BU Face tracking dataset. b–d. Estimated and ground truth values for roll, yaw and pitch angles (straight and

dotted line, respectively), on the video-sequence ‘‘vam2’’
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eyes may impact on the final result. In other cases, we

noticed that the head movement is coupled with a rotation

of pupils, which may impact on the eye locations with

respect to the head pose. Since HPEG data set is designed

for eye gaze estimation, it could be interesting to improve

the precision of eye detector by introducing some spatial

correlations among adjacent frames. But this is, currently,

out of the scope of our work where we used only well-

known algorithms to feature detection. Nevertheless, the

system can be further improved by modifying the features

extraction modules: as it is, RMSE is less than 10� and, in

the most of cases, less than 5�, as ideally required for head

pose estimation [20].

Table 5 reports a comparison with the best algorithms at

the state-of-the-art on HPEG data set. Best algorithms

belong to the category of the feature tracking-based ones.

Overall, we may notice a substantial parity among the

reported methods. The performance of our method is better

for the pitch angle: this is another evidence of the effec-

tiveness of our model, based on the Vitruvian man’s pro-

portions, which led to a simple ratio computation for this

angle. It is worth remarking that pitch angle estimation

usually requires information about the scene characteristics

and the hardware used. If they are absent, feature tracking-

based algorithms exhibit a decrease in performance, but

ours is obviously not affected [20].

5 Conclusions

Head pose estimation is still a challenging task for video-

surveillance and ambient intelligence applications. As a

small part of a recognition system, it must have properties

aimed at making it suitable for many applications.

Although several state-of-the-art approaches have

shown a very good performance, they are still dependent on

a large number of factors: the scene calibration, informa-

tion about the camera used, joint estimation of the pose

when the head moves along the three reference axes at the

same time, high number of features to be extracted, suit-

ability for still images but not for video-sequences and vice

versa.

In this paper, we presented a novel, general-purpose,

geometrical model for head pose estimation, based on the

Vitruvian man’s proportions and the related ‘‘Golden

Fig. 13 a Sample images from HPEG dataset. b, c Estimated and ground truth values for Yaw and Pitch angles ( straight and dotted line,

respectively)

Table 5 Comparison of results on HPEG dataset

Method

(feature

tracking)

Root mean

square error

Classification

accuracy

Automatic feature

localization

Yaw Pitch

Proposed

method

7.45� 5.10� 73.61 % Yes

Optical flow [2] 8.39� 5.51� n.a. yes

Dist. vector

fields [2]

6.65� 5.59� n.a. yes
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Ratio’’. This model allows a very simple computation of

roll, yaw and pitch angles, without requiring any infor-

mation about the scene under surveillance. In particular,

the pitch angle estimation is reduced to a simple ratio

among distances of eyes and nose, according to the specific

assumption of the ‘‘Golden Area’’ existence. In fact, only

locations of eyes and nose are required. Thanks to the

Vitruvian man’s proportions assumption, we have been

also able to derive the maximum angles range allowable

analytically.

Our method has been quantitatively evaluated on three

benchmark data sets representing three basic scenarios

where state-of-the-art methods, needing training sets or

information about head pose initialization and information

about the scene and camera, can work at their best, and set

a sort of ‘‘upper bound’’ for the achievable performance.

Although these ‘‘adverse’’ scenarios, our method resulted

in a better or similar performance on average, showing that

it can work well on both still images and video-sequences.

The proposed algorithm suffers from the inexact com-

putation of eyes coordinates, as usual for all geometrical

methods. In our opinion, we can reduce the reported error

by improving the algorithms for eye–nose detection, as

shown by the comparison among the performance obtained

by manual and automatic features extraction.

To sum up, we believe that the exploitation of the Vit-

ruvian man proportions can be considered as a novel and

convincing method for head pose estimation in computer

vision applications.
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