Publications

Export 135 results:
Filters: Author is Giorgio Giacinto  [Clear All Filters]
2017
L. Piras e Giacinto, G., «Information Fusion in Content Based Image Retrieval: A Comprehensive Overview», Information Fusion, vol 37, pagg 50-60, 2017. (734.6 KB)
D. Maiorca, Mercaldo, F., Giacinto, G., Visaggio, A., e Martinelli, F., «R-PackDroid: API Package-Based Characterization and Detection of Mobile Ransomware», in ACM Symposium on Applied Computing (SAC 2017 - Acceptance Rate 15.7%), 2017, pagg 1718-1723. (272.44 KB)
2018
B. Kolosnjaji, Demontis, A., Biggio, B., Maiorca, D., Giacinto, G., Eckert, C., e Roli, F., «Adversarial Malware Binaries: Evading Deep Learning for Malware Detection in Executables», in 2018 26th European Signal Processing Conference (EUSIPCO), Rome, 2018, pagg 533-537. (674.62 KB)
M. Melis, Maiorca, D., Biggio, B., Giacinto, G., e Roli, F., «Explaining Black-box Android Malware Detection», in 26th European Signal Processing Conference (EUSIPCO '18), Rome, Italy, 2018, pagg 524-528. (431.78 KB)
L. Putzu, Piras, L., e Giacinto, G., «Ten years of Relevance Score for Content Based Image Retrieval», in 14th International Conference Machine Learning and Data Mining (MLDM), New York, 2018, vol 10935.
2019
M. Scalas, Maiorca, D., Mercaldo, F., Visaggio, C. Aaron, Martinelli, F., e Giacinto, G., «On the Effectiveness of System API-Related Information for Android Ransomware Detection», Computers and Security, vol 86, pagg 162-182, 2019. (706.92 KB)
D. Ugarte, Maiorca, D., Cara, F., e Giacinto, G., «PowerDrive: Accurate De-Obfuscation and Analysis of PowerShell Malware», 16th Conference on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA). Springer, Gothenburg, Sweden, pagg 240-259, 2019. (352.39 KB)
D. Maiorca, Biggio, B., e Giacinto, G., «Towards Adversarial Malware Detection: Lessons Learned from PDF-based Attacks», ACM Computing Surveys, vol 52, n° 4, 2019. (1.21 MB)
A. Demontis, Melis, M., Biggio, B., Maiorca, D., Arp, D., Rieck, K., Corona, I., Giacinto, G., e Roli, F., «Yes, Machine Learning Can Be More Secure! A Case Study on Android Malware Detection», IEEE Trans. Dependable and Secure Computing, vol 16, n° 4, pagg 711-724, 2019. (3.61 MB)
In Press
G. Suarez-Tangil, Dash, S. Kumar, Ahmadi, M., Kinder, J., Giacinto, G., e Cavallaro, L., «DroidSieve: Fast and Accurate Classification of Obfuscated Android Malware», in Proceedings of the Seventh {ACM} Conference on Data and Application Security and Privacy, {CODASPY} 2017, In Press. (478.59 KB)

Pages