Publications

Export 80 results:
Filters: Author is Battista Biggio  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
U
B. Nelson, Biggio, B., and Laskov, P., Understanding the Risk Factors of Learning in Adversarial Environments, in 4th ACM Workshop on Artificial Intelligence and Security (AISec 2011), Chicago, IL, USA, 2011, pp. 87–92. (132.42 KB)
W
D. M. Freeman, Jain, S., Duermuth, M., Biggio, B., and Giacinto, G., Who Are You? A Statistical Approach to Measuring User Authenticity, in Proc. 23rd Annual Network & Distributed System Security Symposium (NDSS), 2016. (764.14 KB)
A. Demontis, Melis, M., Pintor, M., Jagielski, M., Biggio, B., Oprea, A., Nita-Rotaru, C., and Roli, F., Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks, in 28th Usenix Security Symposium, Santa Clara, California, USA, 2019, vol. 28th {USENIX} Security Symposium ({USENIX} Security 19), p. 321--338. (1.09 MB)
B. Biggio and Roli, F., Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning, Pattern Recognition, vol. 84, pp. 317-331, 2018. (3.76 MB)

Pages