Publications

Export 428 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
E
G. Fumera and Roli, F., Error rejection in linearly combined multiple classifiers, in Multiple Classifier Systems (MCS 2001), Robinson College, Cambridge, UK, 2001, vol. 2096, pp. 329-338.
G. Giacinto and Roli, F., Ensembles of Neural Networks for Soft Classification of Remote Sensing Images, in European Symposium on Intelligent Techniques, Bari, Italy, 1997, pp. 166-170.
R. Tronci, Ensemble of binary classifiers: combination techniques and design issues, University of Cagliari, 2008.
M. Zanda, Brown, G., Fumera, G., and Roli, F., Ensemble Learning in Linearly Combined Classifiers via Negative Correlation, in 7th Int. Workshop on Multiple Classifier Systems (MCS 2007), Prague, Czech Republic, 2007, vol. 4472, pp. 440-449.
L. Didaci, Giacinto, G., and Roli, F., Ensemble Learning for Intrusion Detection in Computer Networks, in AI*IA, Workshop on "Apprendimento automatico: metodi e applicazioni", Siena, Italy, 2002.
L. Piras, Giacinto, G., and Paredes, R., Enhancing image retrieval by an Exploration-Exploitation approach, in 8th International Conference Machine Learning and Data Mining (MLDM), Berlin, 2012, vol. 7376, pp. 355-365. (307.57 KB)
M. A. O. Ahmed, Didaci, L., Fumera, G., and Roli, F., An Empirical Investigation on the Use of Diversity for Creation of Classifier Ensembles, in Multiple Classifier Systems, 2015, vol. 9132, pp. 206-219. (216.76 KB)
C. - T. Li and Satta, R., Empirical Investigation into the Correlation between Vignetting Effect and the Quality of Sensor Pattern Noise, IET Computer Vision, vol. 6, no. 6, pp. 560-566, 2012.
C. Pagano, Granger, E., Sabourin, R., Rattani, A., Marcialis, G. L., and Roli, F., Efficient Adaptive Face Recognition Systems Based on Capture Conditions, Proc. of , in IEEE Workshop on Computational Intelligence in Biometrics and Identity Management (CIBIM 2014), 2014. (574.39 KB)
M. Scalas, Maiorca, D., Mercaldo, F., Visaggio, C. Aaron, Martinelli, F., and Giacinto, G., On the Effectiveness of System API-Related Information for Android Ransomware Detection, Computers and Security, vol. 86, pp. 162-182, 2019. (706.92 KB)
M. Fraschini, Hillebrand, A., Demuru, M., Didaci, L., and Marcialis, G. L., An EEG-based biometric system using eigenvector centrality in resting state brain activity, IEEE Signal Processing Letters, vol. 22, no. 6, 2015. (522.35 KB)
R. Perdisci, Corona, I., and Giacinto, G., Early Detection of Malicious Flux Networks via Large-Scale Passive DNS Traffic Analysis, IEEE Transactions on Dependable and Secure Computing, vol. 9, pp. 714-726, 2012. (1.37 MB)
D
G. Fumera, Roli, F., and Serrau, A., Dynamics of Variance Reduction in Bagging and Other Techniques, in 6th Int. Workshop on Multiple Classifier Systems (MCS 2005), Seaside, CA, USA, 2005, 2005th ed., vol. 3541, pp. 316-325.
C. Pagano, Granger, E., Sabourin, R., Marcialis, G. L., and Roli, F., Dynamic weighted fusion of adaptive classifier ensembles based on changing data streams, In: Gayar N.E., Schwenker F., Suen C.Y, , , pp, in 6th IAPR TC3 International Workshop on Artificial Neural Networks for Pattern Recognition (ANNPR 2014), 2014, vol. Springer LNAI 8774, pp. 105-116. (1.89 MB)
R. Tronci, Giacinto, G., and Roli, F., Dynamic Score Selection for Fusion of Multiple Biometric Matchers, in 14th IEEE International Conference on Image Analysis and Processing ICIAP 2007, Modena, Italy, 2007, pp. 15-20.
R. Tronci, Giacinto, G., and Roli, F., Dynamic score combination of binary experts, in 19th International Conference on Pattern Recognition (ICPR 2008), Tampa (Florida, USA), 2008.
R. Tronci, Giacinto, G., and Roli, F., Dynamic Score Combination: A Supervised and Unsupervised Score Combination Method, in Machine Learning and Data Mining in Pattern Recognition (MLDM 2009), Leipzig, Germany, 2009, vol. 5632, pp. 163-177.
C. Lobrano, Tronci, R., Giacinto, G., and Roli, F., Dynamic Linear Combination of Two-Class Classifiers, in Lecture Notes in Computer Science, 2010, vol. 6218, pp. 473-482.
L. Didaci and Giacinto, G., Dynamic Classifier Selection by Adaptive k-Nearest-Neighbourhood Rule, in 5th Int. Workshop on Multiple Classifier Systems (MCS 2004), 2004, vol. 3077.
G. Giacinto and Roli, F., Dynamic Classifier Selection Based on Multiple Classifier Behaviour, Pattern Recognition, vol. 34, pp. 179-181, 2001.
G. Giacinto and Roli, F., Dynamic Classifier Selection, in First Int. Workshop on Multiple Classifier Systems (MCS 2000), Cagliari, Italy, 2000, vol. 1857, pp. 177-189.
L. Didaci, Dynamic Classifier Selection, Cagliari (Italy), 2005.
A. Rattani, Marcialis, G. L., Granger, E., and Roli, F., A Dual-staged Classification-Selection Approach for Automated Update of Biometric Templates, in International Conference on Pattern Recognition (ICPR), Tsukuba Science City, JAPAN, 2012.
G. Suarez-Tangil, Dash, S. Kumar, Ahmadi, M., Kinder, J., Giacinto, G., and Cavallaro, L., DroidSieve: Fast and Accurate Classification of Obfuscated Android Malware, in Proceedings of the Seventh {ACM} Conference on Data and Application Security and Privacy, {CODASPY} 2017, In Press. (478.59 KB)
S. Kumar Dash, Suarez-Tangil, G., Khan, S., Tam, K., Ahmadi, M., Kinder, J., and Cavallaro, L., DroidScribe: Classifying Android Malware Based on Runtime Behavior, in Mobile Security Technologies (MoST 2016), 2016. (571.22 KB)

Pages