Publications

Export 12 results:
Filters: Author is Ambra Demontis  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
W
A. Demontis, Melis, M., Pintor, M., Jagielski, M., Biggio, B., Oprea, A., Nita-Rotaru, C., and Roli, F., Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks, in 28th Usenix Security Symposium, Santa Clara, California, USA, 2019, vol. 28th {USENIX} Security Symposium ({USENIX} Security 19), p. 321--338. (1.09 MB)
S
A. Demontis, Biggio, B., Fumera, G., and Roli, F., Super-Sparse Regression for Fast Age Estimation From Faces at Test Time, in 18th Int'l Conf. on Image Analysis and Processing (ICIAP), Genova, Italy, 2015, vol. Image Analysis and Processing (ICIAP 2015), pp. 551-562. (678.7 KB)
A. Demontis, Melis, M., Biggio, B., Fumera, G., and Roli, F., Super-sparse Learning in Similarity Spaces, IEEE Computational Intelligence Magazine, vol. 11, no. 4, pp. 36-45, 2016. (555.22 KB)
A. Demontis, Russu, P., Biggio, B., Fumera, G., and Roli, F., On Security and Sparsity of Linear Classifiers for Adversarial Settings, in Joint IAPR Int'l Workshop on Structural, Syntactic, and Statistical Pattern Recognition, Merida, Mexico, 2016, vol. 10029 of LNCS, pp. 322-332. (425.68 KB)
P. Russu, Demontis, A., Biggio, B., Fumera, G., and Roli, F., Secure Kernel Machines against Evasion Attacks, in 9th ACM Workshop on Artificial Intelligence and Security, Vienna, Austria, 2016, pp. 59-69. (686.41 KB)
M. Melis, Demontis, A., Pintor, M., Sotgiu, A., and Biggio, B., secml: A Python Library for Secure and Explainable Machine Learning. 2019. (1.1 MB)
I
A. Demontis, Biggio, B., Fumera, G., Giacinto, G., and Roli, F., Infinity-norm Support Vector Machines against Adversarial Label Contamination, 1st Italian Conference on CyberSecurity (ITASEC). Venice, Italy , pp. 106-115, 2017. (504.93 KB)
D
A. Sotgiu, Demontis, A., Melis, M., Biggio, B., Fumera, G., Feng, X., and Roli, F., Deep Neural Rejection against Adversarial Examples, EURASIP Journal on Information Security, In Press.
M. Melis, Demontis, A., Biggio, B., Brown, G., Fumera, G., and Roli, F., Is Deep Learning Safe for Robot Vision? Adversarial Examples against the iCub Humanoid, in ICCV 2017 Workshop on Vision in Practice on Autonomous Robots (ViPAR), Venice, Italy, 2017, vol. 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 751-759. (3.16 MB)
A
B. Kolosnjaji, Demontis, A., Biggio, B., Maiorca, D., Giacinto, G., Eckert, C., and Roli, F., Adversarial Malware Binaries: Evading Deep Learning for Malware Detection in Executables, in 2018 26th European Signal Processing Conference (EUSIPCO), Rome, 2018, pp. 533-537. (674.62 KB)